Isolation and Characterization of Cellulose from Biomass: A Methodological Review

Isolation and Characterization of Cellulose from Biomass: A Methodological Review

Penulis

  • Aisyah Hanifah Department of Agro-Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Indonesia
  • Riska Sumirat Department of Agro-Industrial Technology, Faculty of Science and Technology, Universitas Darrusalam Gontor, Indonesia
  • Sarah Fitri Soerya Department of Agricultural and Biosystems Engineering, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Indonesia
  • Manggar Arum Aristri Department of Forest Management, Faculty of Agriculture, Universitas Sebelas Maret, Indonesia

DOI:

https://doi.org/10.21111/atj.v9i1.14568

Kata Kunci:

Biomass, Bibliometric Analysis, Cellulose, Characterization, Isolation

Abstrak

The isolation and characterization of cellulose from biomass have garnered increasing research interest due to cellulose’s pivotal role in supporting sustainable material innovations across various industries. This study presents a comprehensive review of recent advancements in cellulose isolation methods, including chemical, mechanical, and enzymatic techniques, emphasizing their efficiencies in yield and purity. A bibliometric analysis using VOSviewer was also conducted to map research trends, identify leading authors and institutions, and visualize keyword co-occurrence networks from publications between 2015 and early 2025. The bibliometric results revealed three major thematic clusters in cellulose research: extraction and pretreatment technologies, material characterization techniques, and structural property analysis. Publication trends indicated dynamic research developments, particularly a surge in interest following advances in green extraction technologies. Overall, this review highlights the shift towards sustainable cellulose isolation strategies, evaluating the advantages and disadvantages of various methodologies. It provides insights into the strengths and limitations of current techniques, while also outlining potential future directions for research and industrial applications. Keywords: Biomass, Bibliometric Analysis, Cellulose, Characterization, Isolation.

Biografi Penulis

Riska Sumirat, Department of Agro-Industrial Technology, Faculty of Science and Technology, Universitas Darrusalam Gontor, Indonesia

Department of Agro-Industrial Technology, Faculty of Science and Technology, Universitas Darrusalam Gontor, Ponorogo 63471, Indonesia

Sarah Fitri Soerya, Department of Agricultural and Biosystems Engineering, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Indonesia

Department of Agricultural and Biosystems Engineering, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Jatinangor 45363, Indonesia

Manggar Arum Aristri, Department of Forest Management, Faculty of Agriculture, Universitas Sebelas Maret, Indonesia

Department of Forest Management, Faculty of Agriculture, Universitas Sebelas Maret, Ir Sutami 36A, Surakarta 57126, Indonesia

Referensi

Al Ragib, A., Alanazi, Y. M., El-Harbawi, M., Yin, C.-Y., & KHIARI, R. (2024). Sustainable reuse of date palm biomass via extraction of cellulose using natural deep eutectic solvent (NaDES) and microwave-assisted process. International Journal of Biological Macromolecules, 279. https://doi.org/10.1016/j.ijbiomac.2024.135558

Amiralian, N., Annamalai, P. K., Memmott, P., & Martin, D. J. (2015). Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose, 22(4), 2483–2498. https://doi.org/10.1007/s10570-015-0688-x

Amrillah, N. A. Z., Hanum, F. F., Rahayu, A., Hapsari, A. B., & Nuraini. (2023). Potential Utilization of Cocoa Waste from Gunung Kidul Cocoa Fermentation Center: The Influence of NaOCl in Cellulose Extraction from Cocoa Pod Husk. Agroindustrial Technology Journal, 02(01), 91–97.

Bacha, E. G., Shumi, L. D., & Teklehaimanot, T. T. (2022). Isolation and Characterization of Microcrystalline Cellulose from Eragrostesis Teff Straw. In B. M.L. (Ed.), Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST: Vol. 411 LNICST (pp. 44–58). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-93709-6_4

Bao, Y., Zhu, J., Zeng, F., Li, J., Wang, S., Qin, C., Liang, C., Huang, C., & Yao, S. (2022). Superior separation of hemicellulose-derived sugars from eucalyptus with tropic acid pretreatment. Bioresource Technology, 364. https://doi.org/10.1016/j.biortech.2022.128082

Birhanu, M. Z., Tadesse, M. G., Bachheti, R. K., Ahmed, I. N., & Bachheti, A. (2024). A Statistical Empirical Model and RSM-Guided Isolation and Characterization of Cellulose from Invasive Weed Senna didymobotrya (Fresen.) Irwin & Barneby, through Chemical and Spectroscopic Techniques. International Journal of Polymer Science, 2024. https://doi.org/10.1155/2024/5803380

Chen, X., He, D., Hou, T., Lu, M., Mosier, N. S., Han, L., & Xiao, W. (2022). Structure–property–degradability relationships of varisized lignocellulosic biomass induced by ball milling on enzymatic hydrolysis and alcoholysis. Biotechnology for Biofuels and Bioproducts, 15(1), 1–14. https://doi.org/10.1186/s13068-022-02133-x

Devita, W. H., & Srimurni, R. R. (2022). Analisis Dan Desain Sistem Produksi Serat Putih Menggunakan Limbah Padat Sabut Kelapa Sawit (Palm Press Fibre). Agroindustrial Technology Journal, 6(1), 1. https://doi.org/10.21111/atj.v6i1.5840

Dou, C., Ewanick, S., Bura, R., & Gustafson, R. (2016). Post-treatment mechanical refining as a method to improve overall sugar recovery of steam pretreated hybrid poplar. Bioresource Technology, 207, 157–165. https://doi.org/10.1016/j.biortech.2016.01.076

Duan, C., Liu, X., Tian, G., Zhang, D., Wen, Y., Che, Y., Xie, Z., & Ni, Y. (2024). A one-stone-two-birds strategy for cellulose dissolution, regeneration, and functionalization as a photocatalytic composite membrane for wastewater purification. International Journal of Biological Macromolecules, 274. https://doi.org/10.1016/j.ijbiomac.2024.133317

Dube, A. M., Daba, B. J., & Muleta, M. D. (2023). Optimized isolation and characterization of cellulose for extraction of cellulose nanocrystals from Ensete ventricosum pseudo-stem fibre using a two-stage extraction method. Journal of Experimental Nanoscience, 18(1). https://doi.org/10.1080/17458080.2023.2199989

Gabriel, T., Belete, A., Hause, G., Neubert, R. H. H., & Gebre-Mariam, T. (2021). Isolation and Characterization of Cellulose Nanocrystals from Different Lignocellulosic Residues: A Comparative Study. Journal of Polymers and the Environment, 29(9), 2964–2977. https://doi.org/10.1007/s10924-021-02089-3

Gapsari, F., Putri, T. M., Rukmana, W., Juliano, H., Sulaiman, A. M., Dewi, F. G. U., Rangappa, S. M., & Siengchin, S. (2023). Isolation and Characterization of Muntingia Calabura Cellulose Nanofibers. Journal of Natural Fibers, 20(1). https://doi.org/10.1080/15440478.2022.2156018

Hoo, D. Y., Low, Z. L., Low, D. Y. S., Tang, S. Y., Manickam, S., Tan, K. W., & Ban, Z. H. (2022). Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose. Ultrasonics Sonochemistry, 90(June), 106176. https://doi.org/10.1016/j.ultsonch.2022.106176

Hozman-Manrique, A. S., Garcia-Brand, A. J., Hernández-Carrión, M., & Porras, A. (2023). Isolation and Characterization of Cellulose Microfibers from Colombian Cocoa Pod Husk via Chemical Treatment with Pressure Effects. Polymers, 15(3). https://doi.org/10.3390/polym15030664

Julie Chandra, C. S., George, N., & Narayanankutty, S. K. (2016). Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Polymers, 142, 158–166. https://doi.org/10.1016/j.carbpol.2016.01.015

Karimi, K., & Taherzadeh, M. J. (2016). A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresource Technology, 200, 1008–1018. https://doi.org/10.1016/j.biortech.2015.11.022

Kassim, N. A., Mohamed, A. Z., Zainudin, E. S., Zakaria, S., Azman, S. K. Z., & Abdullah, H. H. (2019). Isolation and characterization of macerated cellulose from pineapple leaf. BioResources, 14(1), 1198–1209. https://doi.org/10.15376/biores.14.1.1198-1209

Kaur, J., Chugh, P., Soni, R., & Soni, S. K. (2020). A low-cost approach for the generation of enhanced sugars and ethanol from rice straw using in-house produced cellulase-hemicellulase consortium from A. niger P-19. Bioresource Technology Reports, 11. https://doi.org/10.1016/j.biteb.2020.100469

Kholis, M. N., Asmediana, A., & Sari, M. (2019). Potensi Dan Karakterisasi Enzim Selulase Mikroba Asal Limbah Industri Minyak Kayu Putih. Agroindustrial Technology Journal, 3(2), 110. https://doi.org/10.21111/atj.v3i2.3867

Ko, J. K., Jung, J. H., Altpeter, F., Kannan, B., Kim, H. E., Kim, K. H., Alper, H. S., Um, Y., & Lee, S. M. (2018). Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain. Bioresource Technology, 256, 312–320. https://doi.org/10.1016/j.biortech.2018.01.123

Kouadri, I., & Satha, H. (2018). Extraction and characterization of cellulose and cellulose nanofibers from Citrullus colocynthis seeds. Industrial Crops and Products, 124, 787–796. https://doi.org/10.1016/j.indcrop.2018.08.051

Li, B., Nie, K., Li, L., Fu, G., Liu, C., Gao, S., Han, G., Zhao, T., & Jiang, W. (2023). A Facile Method to Manufacture the Sesamum Indicum Fibers by Glycolic Acid Assisted with Microwave. Journal of Natural Fibers, 20(1). https://doi.org/10.1080/15440478.2022.2156965

Li, J., Liu, Z., Feng, C., Liu, X., Qin, F., Liang, C., Bian, H., Qin, C., & Yao, S. (2021). Green, efficient extraction of bamboo hemicellulose using freeze-thaw assisted alkali treatment. Bioresource Technology, 333. https://doi.org/10.1016/j.biortech.2021.125107

Li, T., Chen, C., Brozena, A. H., Zhu, J. Y., Xu, L., Driemeier, C., Dai, J., Rojas, O. J., Isogai, A., Wågberg, L., & Hu, L. (2021). Developing fibrillated cellulose as a sustainable technological material. Nature, 590(7844), 47–56. https://doi.org/10.1038/s41586-020-03167-7

Lu, Y., He, Q., Fan, G., Cheng, Q., & Song, G. (2021). Extraction and modification of hemicellulose from lignocellulosic biomass: A review. Green Processing and Synthesis, 10(1), 779–804. https://doi.org/10.1515/gps-2021-0065

Manzano, L. F. T., Mapatac, C. J. D., Begsaeng, J. M. G., Nipales, H. A. S., & Leal, D. C. (2025). EVALUATION OF CHEMO-MECHANICAL METHODS FOR EXTRACTING CELLULOSE FROM WASTE CABBAGE (BRASSICA OLERACEA VAR. CAPITATA L.) TRIMMINGS. Cellulose Chemistry and Technology, 59(1–2), 43–48. https://doi.org/10.35812/CelluloseChemTechnol.2025.59.04

Marda S.R, H., Mutiar, S., & Kasim, A. (2023). Effect of NaOH Concentration in The Pulping Process on Yield and Organoleptic of Art Paper from Citronella Distillation Waste. Agroindustrial Technology Journal, 7(3), 141–152. https://doi.org/10.21111/atj.v7i3.10529

Muthamma, K., & Sunil, D. (2022). Cellulose as an Eco-Friendly and Sustainable Material for Optical Anticounterfeiting Applications: An Up-to-Date Appraisal. ACS Omega, 7(47), 42681–42699. https://doi.org/10.1021/acsomega.2c05547

Muthukumar, J., & Chidambaram, R. (2023). ISOLATION AND QUANTIFICATION OF CELLULOSE FROM VARIOUS FOOD-GRADE MACROALGAL SPECIES. Cellulose Chemistry and Technology, 57(3–4), 237–244. https://doi.org/10.35812/CelluloseChemTechnol.2023.57.23

Nie, C., Yang, X., Niazi, N. K., Xu, X., Wen, Y., Rinklebe, J., Ok, Y. S., Xu, S., & Wang, H. (2018). Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere, 200, 274–282. https://doi.org/10.1016/j.chemosphere.2018.02.134

Norfarhana, A. S., Ilyas, R. A., Ngadi, N., & Hafiz Dzarfan Othman, M. (2024). Optimization of ionic liquid pretreatment of sugar palm fiber for cellulose extraction. Journal of Molecular Liquids, 398. https://doi.org/10.1016/j.molliq.2024.124256

Østby, H., Hansen, L. D., Horn, S. J., Eijsink, V. G. H., & Várnai, A. (2020). Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. In Journal of Industrial Microbiology and Biotechnology (Vol. 47, Issues 9–10). Springer International Publishing. https://doi.org/10.1007/s10295-020-02301-8

Owolabi, A. F., Haafiz, M. K. M., Hossain, M. S., Hussin, M. H., & Fazita, M. R. N. (2017). Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds. International Journal of Biological Macromolecules, 95, 1228–1234. https://doi.org/10.1016/j.ijbiomac.2016.11.016

Pimentel, P. S. S. R., de Oliveira, J. B., Astolfi-Filho, S., & Pereira, N. (2021). Enzymatic Hydrolysis of Lignocellulosic Biomass Using an Optimized Enzymatic Cocktail Prepared from Secretomes of Filamentous Fungi Isolated from Amazonian Biodiversity. Applied Biochemistry and Biotechnology, 193(12), 3915–3935. https://doi.org/10.1007/s12010-021-03642-5

Ratnakumar, A., Samarasekara, A. M. P. B., Amarasinghe, D. A. S., & Karunanayake, L. (2022). The influence of particle size on the extraction of cellulose nanofibers using chemical-ultrasonic process. Materials Today: Proceedings, 64, 274–278. https://doi.org/10.1016/j.matpr.2022.04.518

Reid, M. S., Villalobos, M., & Cranston, E. D. (2017). Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir, 33(7), 1583–1598. https://doi.org/10.1021/acs.langmuir.6b03765

Rieland, J. M., & Love, B. J. (2020). Ionic liquids: A milestone on the pathway to greener recycling of cellulose from biomass. Resources, Conservation and Recycling, 155. https://doi.org/10.1016/j.resconrec.2019.104678

Rongpipi, S., Ye, D., Gomez, E. D., & Gomez, E. W. (2019). Progress and opportunities in the characterization of cellulose – an important regulator of cell wall growth and mechanics. Frontiers in Plant Science, 9(March), 1–28. https://doi.org/10.3389/fpls.2018.01894

Samsalee, N., Meerasri, J., & Sothornvit, R. (2023). Rice husk nanocellulose : Extraction by high-pressure homogenization , chemical treatments and characterization. Carbohydrate Polymer Technologies and Applications, 6(August), 100353. https://doi.org/10.1016/j.carpta.2023.100353

Shaikh, H. M., Anis, A., Poulose, A. M., Al-Zahrani, S. M., Madhar, N. A., Alhamidi, A., & Alam, M. A. (2021). Isolation and characterization of alpha and nanocrystalline cellulose from date palm (Phoenix dactylifera l.) trunk mesh. Polymers, 13(11). https://doi.org/10.3390/polym13111893

Sulman, A. M., Matveeva, V. G., & Bronstein, L. M. (2022). Cellulase Immobilization on Nanostructured Supports for Biomass Waste Processing. Nanomaterials, 12(21), 1–20. https://doi.org/10.3390/nano12213796

Sutrisno, E., Tanpichai, S., & Chuangchote, S. (2020). Isolation and characterization of cellulose nanofibers (CNFs) from Macaranga hypoleuca. IOP Conference Series: Earth and Environmental Science, 415(1). https://doi.org/10.1088/1755-1315/415/1/012003

Trache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., Hassan, T. M., & Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056

Weerasooriya, P. R. D., Abdul Khalil, H. P. S., Kaus, N. H. M., Hossain, M. S., Hiziroglu, S., Nurul Fazita, M. R., Gopakumar, D. A., & Mohamad Haafiz, M. K. (2020). Isolation and Characterization of Regenerated Cellulose Films Using Microcrystalline Cellulose from Oil Palm Empty Fruit Bunch with an Ionic Liquid. BioResources, 15(4), 8268–8290. https://doi.org/10.15376/biores.15.4.8268-8290

Weng, R., Tian, F., Huang, X., Ni, L., & Xi, B. (2021). Preparation of cellulose nanofiltration membranes and their removal of typical pollutants from drinking water. Water Supply, 21(8), 4355–4368. https://doi.org/10.2166/ws.2021.183

Yan Zhang; Huile Wang; Xindi Sun; Yifan Wang and Zhong Liu. (2021). Separation and Characterization of Biomass Components (Cellulose, Hemicellulose, and Lignin) from Corn Stalk. In Bioresources (Vol. 16, Issue 4, pp. 7205–7219). bioresources.com

Yang, Z., & Chen, Q. (2023). Enzymatic preparation and characterization of honey pomelo peel cellulose and its cellulose nanofibers. Industrial Crops and Products, 206. https://doi.org/10.1016/j.indcrop.2023.117655

Zhang, L., Zhang, C., Ma, Y., Zhao, X., & Zhang, X. (2024). Lignocellulose pretreatment by Deep eutectic solvent and water binary system for enhancement of lignin extraction and cellulose saccharification. Industrial Crops and Products, 211. https://doi.org/10.1016/j.indcrop.2024.118257

Zheng, D., Zhang, Y., Guo, Y., & Yue, J. (2019). Isolation and characterization of nanocellulose with a novel shape from walnut (Juglans Regia L.) shell agricultural waste. Polymers, 11(7). https://doi.org/10.3390/polym11071130

##submission.downloads##

Telah diserahkan

2025-04-30

Diterima

2025-05-17

Diterbitkan

2025-07-02

Cara Mengutip

Hanifah, A., Sumirat, R., Soerya, S. F., & Aristri, M. A. (2025). Isolation and Characterization of Cellulose from Biomass: A Methodological Review: Isolation and Characterization of Cellulose from Biomass: A Methodological Review. Agroindustrial Technology Journal, 9(1), 15–33. https://doi.org/10.21111/atj.v9i1.14568