Isolation and Characterization of Cellulose from Biomass: A Methodological Review
Isolation and Characterization of Cellulose from Biomass: A Methodological Review
DOI:
https://doi.org/10.21111/atj.v9i1.14568Kata Kunci:
Biomass, Bibliometric Analysis, Cellulose, Characterization, IsolationAbstrak
The isolation and characterization of cellulose from biomass have garnered increasing research interest due to cellulose’s pivotal role in supporting sustainable material innovations across various industries. This study presents a comprehensive review of recent advancements in cellulose isolation methods, including chemical, mechanical, and enzymatic techniques, emphasizing their efficiencies in yield and purity. A bibliometric analysis using VOSviewer was also conducted to map research trends, identify leading authors and institutions, and visualize keyword co-occurrence networks from publications between 2015 and early 2025. The bibliometric results revealed three major thematic clusters in cellulose research: extraction and pretreatment technologies, material characterization techniques, and structural property analysis. Publication trends indicated dynamic research developments, particularly a surge in interest following advances in green extraction technologies. Overall, this review highlights the shift towards sustainable cellulose isolation strategies, evaluating the advantages and disadvantages of various methodologies. It provides insights into the strengths and limitations of current techniques, while also outlining potential future directions for research and industrial applications. Keywords: Biomass, Bibliometric Analysis, Cellulose, Characterization, Isolation.Referensi
Al Ragib, A., Alanazi, Y. M., El-Harbawi, M., Yin, C.-Y., & KHIARI, R. (2024). Sustainable reuse of date palm biomass via extraction of cellulose using natural deep eutectic solvent (NaDES) and microwave-assisted process. International Journal of Biological Macromolecules, 279. https://doi.org/10.1016/j.ijbiomac.2024.135558
Amiralian, N., Annamalai, P. K., Memmott, P., & Martin, D. J. (2015). Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose, 22(4), 2483–2498. https://doi.org/10.1007/s10570-015-0688-x
Amrillah, N. A. Z., Hanum, F. F., Rahayu, A., Hapsari, A. B., & Nuraini. (2023). Potential Utilization of Cocoa Waste from Gunung Kidul Cocoa Fermentation Center: The Influence of NaOCl in Cellulose Extraction from Cocoa Pod Husk. Agroindustrial Technology Journal, 02(01), 91–97.
Bacha, E. G., Shumi, L. D., & Teklehaimanot, T. T. (2022). Isolation and Characterization of Microcrystalline Cellulose from Eragrostesis Teff Straw. In B. M.L. (Ed.), Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST: Vol. 411 LNICST (pp. 44–58). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-93709-6_4
Bao, Y., Zhu, J., Zeng, F., Li, J., Wang, S., Qin, C., Liang, C., Huang, C., & Yao, S. (2022). Superior separation of hemicellulose-derived sugars from eucalyptus with tropic acid pretreatment. Bioresource Technology, 364. https://doi.org/10.1016/j.biortech.2022.128082
Birhanu, M. Z., Tadesse, M. G., Bachheti, R. K., Ahmed, I. N., & Bachheti, A. (2024). A Statistical Empirical Model and RSM-Guided Isolation and Characterization of Cellulose from Invasive Weed Senna didymobotrya (Fresen.) Irwin & Barneby, through Chemical and Spectroscopic Techniques. International Journal of Polymer Science, 2024. https://doi.org/10.1155/2024/5803380
Chen, X., He, D., Hou, T., Lu, M., Mosier, N. S., Han, L., & Xiao, W. (2022). Structure–property–degradability relationships of varisized lignocellulosic biomass induced by ball milling on enzymatic hydrolysis and alcoholysis. Biotechnology for Biofuels and Bioproducts, 15(1), 1–14. https://doi.org/10.1186/s13068-022-02133-x
Devita, W. H., & Srimurni, R. R. (2022). Analisis Dan Desain Sistem Produksi Serat Putih Menggunakan Limbah Padat Sabut Kelapa Sawit (Palm Press Fibre). Agroindustrial Technology Journal, 6(1), 1. https://doi.org/10.21111/atj.v6i1.5840
Dou, C., Ewanick, S., Bura, R., & Gustafson, R. (2016). Post-treatment mechanical refining as a method to improve overall sugar recovery of steam pretreated hybrid poplar. Bioresource Technology, 207, 157–165. https://doi.org/10.1016/j.biortech.2016.01.076
Duan, C., Liu, X., Tian, G., Zhang, D., Wen, Y., Che, Y., Xie, Z., & Ni, Y. (2024). A one-stone-two-birds strategy for cellulose dissolution, regeneration, and functionalization as a photocatalytic composite membrane for wastewater purification. International Journal of Biological Macromolecules, 274. https://doi.org/10.1016/j.ijbiomac.2024.133317
Dube, A. M., Daba, B. J., & Muleta, M. D. (2023). Optimized isolation and characterization of cellulose for extraction of cellulose nanocrystals from Ensete ventricosum pseudo-stem fibre using a two-stage extraction method. Journal of Experimental Nanoscience, 18(1). https://doi.org/10.1080/17458080.2023.2199989
Gabriel, T., Belete, A., Hause, G., Neubert, R. H. H., & Gebre-Mariam, T. (2021). Isolation and Characterization of Cellulose Nanocrystals from Different Lignocellulosic Residues: A Comparative Study. Journal of Polymers and the Environment, 29(9), 2964–2977. https://doi.org/10.1007/s10924-021-02089-3
Gapsari, F., Putri, T. M., Rukmana, W., Juliano, H., Sulaiman, A. M., Dewi, F. G. U., Rangappa, S. M., & Siengchin, S. (2023). Isolation and Characterization of Muntingia Calabura Cellulose Nanofibers. Journal of Natural Fibers, 20(1). https://doi.org/10.1080/15440478.2022.2156018
Hoo, D. Y., Low, Z. L., Low, D. Y. S., Tang, S. Y., Manickam, S., Tan, K. W., & Ban, Z. H. (2022). Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose. Ultrasonics Sonochemistry, 90(June), 106176. https://doi.org/10.1016/j.ultsonch.2022.106176
Hozman-Manrique, A. S., Garcia-Brand, A. J., Hernández-Carrión, M., & Porras, A. (2023). Isolation and Characterization of Cellulose Microfibers from Colombian Cocoa Pod Husk via Chemical Treatment with Pressure Effects. Polymers, 15(3). https://doi.org/10.3390/polym15030664
Julie Chandra, C. S., George, N., & Narayanankutty, S. K. (2016). Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Polymers, 142, 158–166. https://doi.org/10.1016/j.carbpol.2016.01.015
Karimi, K., & Taherzadeh, M. J. (2016). A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresource Technology, 200, 1008–1018. https://doi.org/10.1016/j.biortech.2015.11.022
Kassim, N. A., Mohamed, A. Z., Zainudin, E. S., Zakaria, S., Azman, S. K. Z., & Abdullah, H. H. (2019). Isolation and characterization of macerated cellulose from pineapple leaf. BioResources, 14(1), 1198–1209. https://doi.org/10.15376/biores.14.1.1198-1209
Kaur, J., Chugh, P., Soni, R., & Soni, S. K. (2020). A low-cost approach for the generation of enhanced sugars and ethanol from rice straw using in-house produced cellulase-hemicellulase consortium from A. niger P-19. Bioresource Technology Reports, 11. https://doi.org/10.1016/j.biteb.2020.100469
Kholis, M. N., Asmediana, A., & Sari, M. (2019). Potensi Dan Karakterisasi Enzim Selulase Mikroba Asal Limbah Industri Minyak Kayu Putih. Agroindustrial Technology Journal, 3(2), 110. https://doi.org/10.21111/atj.v3i2.3867
Ko, J. K., Jung, J. H., Altpeter, F., Kannan, B., Kim, H. E., Kim, K. H., Alper, H. S., Um, Y., & Lee, S. M. (2018). Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain. Bioresource Technology, 256, 312–320. https://doi.org/10.1016/j.biortech.2018.01.123
Kouadri, I., & Satha, H. (2018). Extraction and characterization of cellulose and cellulose nanofibers from Citrullus colocynthis seeds. Industrial Crops and Products, 124, 787–796. https://doi.org/10.1016/j.indcrop.2018.08.051
Li, B., Nie, K., Li, L., Fu, G., Liu, C., Gao, S., Han, G., Zhao, T., & Jiang, W. (2023). A Facile Method to Manufacture the Sesamum Indicum Fibers by Glycolic Acid Assisted with Microwave. Journal of Natural Fibers, 20(1). https://doi.org/10.1080/15440478.2022.2156965
Li, J., Liu, Z., Feng, C., Liu, X., Qin, F., Liang, C., Bian, H., Qin, C., & Yao, S. (2021). Green, efficient extraction of bamboo hemicellulose using freeze-thaw assisted alkali treatment. Bioresource Technology, 333. https://doi.org/10.1016/j.biortech.2021.125107
Li, T., Chen, C., Brozena, A. H., Zhu, J. Y., Xu, L., Driemeier, C., Dai, J., Rojas, O. J., Isogai, A., Wågberg, L., & Hu, L. (2021). Developing fibrillated cellulose as a sustainable technological material. Nature, 590(7844), 47–56. https://doi.org/10.1038/s41586-020-03167-7
Lu, Y., He, Q., Fan, G., Cheng, Q., & Song, G. (2021). Extraction and modification of hemicellulose from lignocellulosic biomass: A review. Green Processing and Synthesis, 10(1), 779–804. https://doi.org/10.1515/gps-2021-0065
Manzano, L. F. T., Mapatac, C. J. D., Begsaeng, J. M. G., Nipales, H. A. S., & Leal, D. C. (2025). EVALUATION OF CHEMO-MECHANICAL METHODS FOR EXTRACTING CELLULOSE FROM WASTE CABBAGE (BRASSICA OLERACEA VAR. CAPITATA L.) TRIMMINGS. Cellulose Chemistry and Technology, 59(1–2), 43–48. https://doi.org/10.35812/CelluloseChemTechnol.2025.59.04
Marda S.R, H., Mutiar, S., & Kasim, A. (2023). Effect of NaOH Concentration in The Pulping Process on Yield and Organoleptic of Art Paper from Citronella Distillation Waste. Agroindustrial Technology Journal, 7(3), 141–152. https://doi.org/10.21111/atj.v7i3.10529
Muthamma, K., & Sunil, D. (2022). Cellulose as an Eco-Friendly and Sustainable Material for Optical Anticounterfeiting Applications: An Up-to-Date Appraisal. ACS Omega, 7(47), 42681–42699. https://doi.org/10.1021/acsomega.2c05547
Muthukumar, J., & Chidambaram, R. (2023). ISOLATION AND QUANTIFICATION OF CELLULOSE FROM VARIOUS FOOD-GRADE MACROALGAL SPECIES. Cellulose Chemistry and Technology, 57(3–4), 237–244. https://doi.org/10.35812/CelluloseChemTechnol.2023.57.23
Nie, C., Yang, X., Niazi, N. K., Xu, X., Wen, Y., Rinklebe, J., Ok, Y. S., Xu, S., & Wang, H. (2018). Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere, 200, 274–282. https://doi.org/10.1016/j.chemosphere.2018.02.134
Norfarhana, A. S., Ilyas, R. A., Ngadi, N., & Hafiz Dzarfan Othman, M. (2024). Optimization of ionic liquid pretreatment of sugar palm fiber for cellulose extraction. Journal of Molecular Liquids, 398. https://doi.org/10.1016/j.molliq.2024.124256
Østby, H., Hansen, L. D., Horn, S. J., Eijsink, V. G. H., & Várnai, A. (2020). Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. In Journal of Industrial Microbiology and Biotechnology (Vol. 47, Issues 9–10). Springer International Publishing. https://doi.org/10.1007/s10295-020-02301-8
Owolabi, A. F., Haafiz, M. K. M., Hossain, M. S., Hussin, M. H., & Fazita, M. R. N. (2017). Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds. International Journal of Biological Macromolecules, 95, 1228–1234. https://doi.org/10.1016/j.ijbiomac.2016.11.016
Pimentel, P. S. S. R., de Oliveira, J. B., Astolfi-Filho, S., & Pereira, N. (2021). Enzymatic Hydrolysis of Lignocellulosic Biomass Using an Optimized Enzymatic Cocktail Prepared from Secretomes of Filamentous Fungi Isolated from Amazonian Biodiversity. Applied Biochemistry and Biotechnology, 193(12), 3915–3935. https://doi.org/10.1007/s12010-021-03642-5
Ratnakumar, A., Samarasekara, A. M. P. B., Amarasinghe, D. A. S., & Karunanayake, L. (2022). The influence of particle size on the extraction of cellulose nanofibers using chemical-ultrasonic process. Materials Today: Proceedings, 64, 274–278. https://doi.org/10.1016/j.matpr.2022.04.518
Reid, M. S., Villalobos, M., & Cranston, E. D. (2017). Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir, 33(7), 1583–1598. https://doi.org/10.1021/acs.langmuir.6b03765
Rieland, J. M., & Love, B. J. (2020). Ionic liquids: A milestone on the pathway to greener recycling of cellulose from biomass. Resources, Conservation and Recycling, 155. https://doi.org/10.1016/j.resconrec.2019.104678
Rongpipi, S., Ye, D., Gomez, E. D., & Gomez, E. W. (2019). Progress and opportunities in the characterization of cellulose – an important regulator of cell wall growth and mechanics. Frontiers in Plant Science, 9(March), 1–28. https://doi.org/10.3389/fpls.2018.01894
Samsalee, N., Meerasri, J., & Sothornvit, R. (2023). Rice husk nanocellulose : Extraction by high-pressure homogenization , chemical treatments and characterization. Carbohydrate Polymer Technologies and Applications, 6(August), 100353. https://doi.org/10.1016/j.carpta.2023.100353
Shaikh, H. M., Anis, A., Poulose, A. M., Al-Zahrani, S. M., Madhar, N. A., Alhamidi, A., & Alam, M. A. (2021). Isolation and characterization of alpha and nanocrystalline cellulose from date palm (Phoenix dactylifera l.) trunk mesh. Polymers, 13(11). https://doi.org/10.3390/polym13111893
Sulman, A. M., Matveeva, V. G., & Bronstein, L. M. (2022). Cellulase Immobilization on Nanostructured Supports for Biomass Waste Processing. Nanomaterials, 12(21), 1–20. https://doi.org/10.3390/nano12213796
Sutrisno, E., Tanpichai, S., & Chuangchote, S. (2020). Isolation and characterization of cellulose nanofibers (CNFs) from Macaranga hypoleuca. IOP Conference Series: Earth and Environmental Science, 415(1). https://doi.org/10.1088/1755-1315/415/1/012003
Trache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., Hassan, T. M., & Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056
Weerasooriya, P. R. D., Abdul Khalil, H. P. S., Kaus, N. H. M., Hossain, M. S., Hiziroglu, S., Nurul Fazita, M. R., Gopakumar, D. A., & Mohamad Haafiz, M. K. (2020). Isolation and Characterization of Regenerated Cellulose Films Using Microcrystalline Cellulose from Oil Palm Empty Fruit Bunch with an Ionic Liquid. BioResources, 15(4), 8268–8290. https://doi.org/10.15376/biores.15.4.8268-8290
Weng, R., Tian, F., Huang, X., Ni, L., & Xi, B. (2021). Preparation of cellulose nanofiltration membranes and their removal of typical pollutants from drinking water. Water Supply, 21(8), 4355–4368. https://doi.org/10.2166/ws.2021.183
Yan Zhang; Huile Wang; Xindi Sun; Yifan Wang and Zhong Liu. (2021). Separation and Characterization of Biomass Components (Cellulose, Hemicellulose, and Lignin) from Corn Stalk. In Bioresources (Vol. 16, Issue 4, pp. 7205–7219). bioresources.com
Yang, Z., & Chen, Q. (2023). Enzymatic preparation and characterization of honey pomelo peel cellulose and its cellulose nanofibers. Industrial Crops and Products, 206. https://doi.org/10.1016/j.indcrop.2023.117655
Zhang, L., Zhang, C., Ma, Y., Zhao, X., & Zhang, X. (2024). Lignocellulose pretreatment by Deep eutectic solvent and water binary system for enhancement of lignin extraction and cellulose saccharification. Industrial Crops and Products, 211. https://doi.org/10.1016/j.indcrop.2024.118257
Zheng, D., Zhang, Y., Guo, Y., & Yue, J. (2019). Isolation and characterization of nanocellulose with a novel shape from walnut (Juglans Regia L.) shell agricultural waste. Polymers, 11(7). https://doi.org/10.3390/polym11071130
##submission.downloads##
Telah diserahkan
Diterima
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The author whose published manuscript approved the following provisions:
1. The right of publication of all material published in the journal / published in the Agroindustrial Technology Journal is held by the editorial board with the knowledge of the author (moral rights remain the author of the script).
2. The formal legal provisions for access to digital articles of this electronic journal are subject to the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0), which means that Agroindustrial Technology Journal reserves the right to save, transmit media or format, Database), maintain, and publish articles without requesting permission from the Author as long as it keeps the Author's name as the owner of Copyright.
3. Printed and electronically published manuscripts are open access for educational, research and library purposes. In addition to these objectives, the editorial board shall not be liable for violations of copyright law.
