Screening and Identification of Secondary Metabolites of Ant Nest Plants From the Nabire Forest With Different Solvents
DOI:
https://doi.org/10.21111/atj.v9i2.15255Kata Kunci:
myrmecodia pendans; phytochemicals,; secondary metabolites; solvents;Abstrak
Ant nests (Myrmecodia pendans), characteristic epiphytic flora of Papua, are recognized for harboring diverse bioactive constituents, including phenolics, flavonoids, tannins, saponins, alkaloids, and triterpenoids, which contribute significantly to antioxidant and pharmacological properties. Nonetheless, the concentrations of these secondary metabolites exhibit inconsistency, primarily attributable to variations in solvent polarity and environmental factors in cultivation regions. This investigation sought to profile and characterize secondary metabolites from ant nests sourced from the Nabire forest, employing solvents of varying polarities—ethanol, methanol, and n-hexane—to evaluate the efficacy of bioactive compound extraction and antioxidant potential. Extraction procedures involved maceration over a 72-hour duration with the aforementioned solvents. The data obtained were then analyzed quantitatively descriptively with an average followed by a standard deviation. Phytochemical screening revealed that all three extracts contained phenolics, flavonoids, tannins, and triterpenoids; however, ethanol and methanol extracts demonstrated robust positive responses for saponins and alkaloids, whereas the n-hexane extract yielded solely triterpenoids and steroids. Quantitative assessments indicated that the 96% ethanol extract exhibited the highest total phenolic content (84.52 ± 2.31 mg GAE/g) and flavonoid content (61.47 ± 1.28 mg QE/g), coupled with the most potent antioxidant activity (IC₅₀ = 78.65 ± 2.11 ppm). The methanol extract displayed moderate efficacy, while n-hexane showed the weakest performance. These findings underscore the substantial influence of solvent selection on the yield of active compounds. Consequently, ethanol is advocated as the optimal solvent for isolating phenolic and flavonoid compounds from Nabire ant nests. Future investigations are proposed, incorporating advanced extraction techniques such as ultrasonic-assisted methods or ohmic heating, alongside detailed profiling via LC-MS to pinpoint predominant bioactive entities. Keywords: antioxidant activity, myrmecodia pendans; phytochemicals,; secondary metabolites; solventsReferensi
Aghoutane, B., Talbi, H., Naama, A., Monfalouti, H. El, & Kartah, B. E. (2023). Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Euphorbia resinifiera O. Berg. Tropical Journal of Natural Product Research, 7(3), 2530–2535. https://doi.org/10.26538/tjnpr/v7i3.10
Antony, A., & Farid, M. (2022). Effect of Temperatures on Polyphenols during Extraction. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12042107
Autor, E., Cornejo, A., Bimbela, F., Maisterra, M., Gandía, L. M., & Martínez-Merino, V. (2022). Extraction of Phenolic Compounds from Populus Salicaceae Bark. Biomolecules, 12(4). https://doi.org/10.3390/biom12040539
Ayele, D. T., Akele, M. L., & Melese, A. T. (2022). Analysis of total phenolic contents, flavonoids, antioxidant and antibacterial activities of Croton macrostachyus root extracts. BMC Chemistry, 16(1), 1–9. https://doi.org/10.1186/s13065-022-00822-0
Damanik, M. (2025). The effect of storage time at room temperature on phytochemical screening and toxicity testing of acetone and ethyl acetate extracts of tinuktuk. https://doi.org/10.2478/9788368412017-047
Dembitsky, V. M., Gloriozova, T. A., & Poroikov, V. V. (2021). Antitumor profile of carbon-bridged steroids (Cbs) and triterpenoids. Marine Drugs, 19(6). https://doi.org/10.3390/md19060324
Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26(17), 1–16. https://doi.org/10.3390/molecules26175377
Dirgantara, S., Insanu, M., & Fidrianny, I. (2022). MEdical Properties of Ant Nest Palnt (Myrmecodia Genus): A Comprehensive Review. Macedonian Journal of Medical Science, 10(F), 97–103. https://doi.org/https://doi.org/10.3889/oamjms.2022.8481
Doughari, J. H., & Saa-Aondo, M. (2021). Phytochemical analysis of crude methanol extracts and antimicrobial activity of n-hexane fractions of methanol seed and pod extracts of prosopis africana on some selected microoganisms. Pharmacologyonline, 2, 121–137.
El Mannoubi, I. (2023). Impact of different solvents on extraction yield, phenolic composition, in vitro antioxidant and antibacterial activities of deseeded Opuntia stricta fruit. Journal of Umm Al-Qura University for Applied Sciences, 9(2), 176–184. https://doi.org/10.1007/s43994-023-00031-y
Guerriero, G., Berni, R., Muñoz-Sanchez, J. A., Apone, F., Abdel-Salam, E. M., Qahtan, A. A., Alatar, A. A., Cantini, C., Cai, G., Hausman, J. F., Siddiqui, K. S., Hernández-Sotomayor, S. M. T., & Faisal, M. (2018). Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes, 9(6). https://doi.org/10.3390/genes9060309
Hanifah, A., Sumirat, R., Soerya, S. F., & Aristri, M. A. (2025). Isolation and Characterization of Cellulose From Biomass: A Methodological Review. Agroindustrial Technology Journal, 9(1), 15–33. https://doi.org/http://doi.org/10.21111/atj.v9i1.14568
Khademi, F. (2024). Therapeutic Bioactives and Their Progressive Extraction , Fractionation , and Analytical Techniques : A Comprehensive Review. 13(December 2023), 20–35.
Kholif, A. E. (2023). A Review of Effect of Saponins on Ruminal Fermentation, Health and Performance of Ruminants. Veterinary Sciences, 10(7). https://doi.org/10.3390/vetsci10070450
Krisnaningsih, A. T. N., Brihandhono, A., & Rahayu, P. P. (2024). Enhancing bioactive content in Malus sylvestris peel extract for antioxidant source using microwave-assisted extraction (MAE) and predicting the potential of ant nests. F1000Research, 13, 653. https://doi.org/10.12688/f1000research.145898.1
Lohvina, H., Sándor, M., & Wink, M. (2022). Effect of ethanol solvents on total phenolic content and antioxidant properties of seed extracts of fenugreek (Trigonella foenum-graecum l.) varieties and determination of phenolic composition by hplc-esi-ms. Diversity, 14(1). https://doi.org/10.3390/d14010007
Manuhara, Y. S. W., Sugiharto, S., Kristanti, A. N., Aminah, N. S., Wibowo, A. T., Wardana, A. P., Putro, Y. K., & Sugiarso, D. (2022). Antioxidant Activities, Total Phenol, Flavonoid, and Mineral Content in the Rhizome of Various Indonesian Herbal Plants. Rasayan Journal of Chemistry, 15(4), 2724–2730. https://doi.org/10.31788/RJC.2022.1548024
Muflihah, Y. M., Gollavelli, G., & Ling, Y. C. (2021). Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 indonesian indigenous herbs. Antioxidants, 10(10), 1–15. https://doi.org/10.3390/antiox10101530
Mushtaq, Z., Khan, U., Seher, N., Shahid, M., Shahzad, M. T., Bhatti, A. A., & Sikander, T. (2021). Evaluation of antimicrobial, antioxidant and enzyme inhibition roles of polar and non-polar extracts of clitoria ternatea seeds. Journal of Animal and Plant Sciences, 31(5), 1405–1418. https://doi.org/10.36899/JAPS.2021.5.0342
Najmi, A., Javed, S. A., Al Bratty, M., & Alhazmi, H. A. (2022). Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules, 27(2). https://doi.org/10.3390/molecules27020349
Nisca, A., & Tanase, C. (2025). Approaches to Extracting Bioactive Compounds from Bark of Various Plants: A Brief Review. Plants, 14(18), 13–17. https://doi.org/10.3390/plants14182929
Pagani, E., Ropke, C. D., Soares, C. M., Perez, S. A. C., Benevides, P. J. C., Barbosa, B. S., Carvalho, A. C. B., & Behrens, M. D. (2024). Technology Readiness Level Roadmap for Developing Innovative Herbal Medicinal Products. Pharmaceuticals, 17(6), 1–23. https://doi.org/10.3390/ph17060703
Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., & Lewandowski, W. (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 14(8), 1–24. https://doi.org/10.3390/ma14081984
Prayitno., S. A., & Utami, D. R. (2024). Identifikasi Senyawa Fitokimia secara Kualitatif dari ekstrak etanol Daun Sirih Merah (Piper crocatum Ruiz and Pav.). HERCLIPS (Journal of Herbal, Clinical and Pharmaceutical Science), 6(1), 1–9. https://doi.org/10.30587/herclips.v6i01.8213
Prayitno, S. A., Utami, D. R., & Putri, S. N. . (2025). Phytochemicals Analysis and Antioxidant (IC50) Value of Dried and Fresh MAngrove (Rhizopora racemosa) LEaves extract for Herbal Drink Base. Journal of Tropical Food and Agroindustrial Technology, 6(1), 1–7. https://doi.org/10.21070/jtfat.v6i01.1643
Ramesh, M. M., Shankar, N. S., & Venkatappa, A. H. (2024). Driving/Critical Factors Considered During Extraction to Obtain Bioactive Enriched Extracts. Pharmacognosy Reviews, 18(35), 68–81. https://doi.org/10.5530/phrev.2024.18.7
Simões, R., Miranda, I., & Pereira, H. (2022). The Influence of Solvent and Extraction Time on Yield and Chemical Selectivity of Cuticular Waxes from Quercus suber Leaves. Processes, 10(11). https://doi.org/10.3390/pr10112270
Thaeabteh, A., Juma, S., Bader, M., KAraman, D., Scrano, L., Bufo, S. A., & Karaman, R. (2019). Herbivores, Cancerous Cells and Pathogens. Toxins, 11(656), 1–28.
Tripathi, S., Singh, S., Mishra, N., & Mishra, N. (2025). The Impact of Solvent Polarity on the Phenolic and Antioxidant Capacity of Green Coffee Beans (Robusta Species) Extracts. Current Research in Nutrition and Food Science, 13(2), 926–936. https://doi.org/10.12944/CRNFSJ.13.2.27
Tzanova, M., Atanasov, V., Yaneva, Z., Ivanova, D., & Dinev, T. (2020). Selectivity of current extraction techniques for flavonoids from plant materials. Processes, 8(10), 1–30. https://doi.org/10.3390/pr8101222
Usman, A., Mohammed, Y., Mohammed, H. O., Usaman, N. L., & Zakari, A. . (2020). 11. Usman.pdfPhytochemicals Screening and Antioxidant Activity of Balanites Aegyptiaca Root BArk Extract: Influence of Solvent. Comunication in Physical Science, 5(2), 156–164.
Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics, 10(3), 1–30. https://doi.org/10.3390/antibiotics10030318
Yati, L., Safari, A. D., Saputra, D. A., Muflihati, I., & Suhendriani, S. (2022). Minuman Serbuk Instan dari Kulit Buah Naga dengan Perbedaan Formulasi Asam dan Basa (pp. 24–34). https://doi.org/http://dx.doi.org/10.21111/atj.v6i1.7233
##submission.downloads##
Telah diserahkan
Diterima
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The author whose published manuscript approved the following provisions:
1. The right of publication of all material published in the journal / published in the Agroindustrial Technology Journal is held by the editorial board with the knowledge of the author (moral rights remain the author of the script).
2. The formal legal provisions for access to digital articles of this electronic journal are subject to the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0), which means that Agroindustrial Technology Journal reserves the right to save, transmit media or format, Database), maintain, and publish articles without requesting permission from the Author as long as it keeps the Author's name as the owner of Copyright.
3. Printed and electronically published manuscripts are open access for educational, research and library purposes. In addition to these objectives, the editorial board shall not be liable for violations of copyright law.
