Screening and Identification of Secondary Metabolites of Ant Nest Plants From the Nabire Forest With Different Solvents

Penulis

  • Sutrisno Adi Prayitno Food Technology Study Program, Universitas Muhammadiyah Gresik, Indonesia
  • Dwi Retnaningtyas Utami Food Technology Study Program, Universitas Muhammadiyah Gresik, Indonesia
  • Khoiroh Inda Dini Food Technology Study Program, Universitas Muhammadiyah Gresik, Indonesia
  • Andalusia Trisna Salsabila Food Technology Study Program, Universitas Muhammadiyah Gresik, Indonesia
  • Devi Kartika Sari Food Technology Study Program, Universitas Muhammadiyah Gresik, Indonesia

DOI:

https://doi.org/10.21111/atj.v9i2.15255

Kata Kunci:

myrmecodia pendans; phytochemicals,; secondary metabolites; solvents;

Abstrak

Ant nests (Myrmecodia pendans), characteristic epiphytic flora of Papua, are recognized for harboring diverse bioactive constituents, including phenolics, flavonoids, tannins, saponins, alkaloids, and triterpenoids, which contribute significantly to antioxidant and pharmacological properties. Nonetheless, the concentrations of these secondary metabolites exhibit inconsistency, primarily attributable to variations in solvent polarity and environmental factors in cultivation regions. This investigation sought to profile and characterize secondary metabolites from ant nests sourced from the Nabire forest, employing solvents of varying polarities—ethanol, methanol, and n-hexane—to evaluate the efficacy of bioactive compound extraction and antioxidant potential. Extraction procedures involved maceration over a 72-hour duration with the aforementioned solvents. The data obtained were then analyzed quantitatively descriptively with an average followed by a standard deviation. Phytochemical screening revealed that all three extracts contained phenolics, flavonoids, tannins, and triterpenoids; however, ethanol and methanol extracts demonstrated robust positive responses for saponins and alkaloids, whereas the n-hexane extract yielded solely triterpenoids and steroids. Quantitative assessments indicated that the 96% ethanol extract exhibited the highest total phenolic content (84.52 ± 2.31 mg GAE/g) and flavonoid content (61.47 ± 1.28 mg QE/g), coupled with the most potent antioxidant activity (IC₅₀ = 78.65 ± 2.11 ppm). The methanol extract displayed moderate efficacy, while n-hexane showed the weakest performance. These findings underscore the substantial influence of solvent selection on the yield of active compounds. Consequently, ethanol is advocated as the optimal solvent for isolating phenolic and flavonoid compounds from Nabire ant nests. Future investigations are proposed, incorporating advanced extraction techniques such as ultrasonic-assisted methods or ohmic heating, alongside detailed profiling via LC-MS to pinpoint predominant bioactive entities.   Keywords: antioxidant activity, myrmecodia pendans; phytochemicals,; secondary metabolites; solvents

Referensi

Aghoutane, B., Talbi, H., Naama, A., Monfalouti, H. El, & Kartah, B. E. (2023). Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Euphorbia resinifiera O. Berg. Tropical Journal of Natural Product Research, 7(3), 2530–2535. https://doi.org/10.26538/tjnpr/v7i3.10

Antony, A., & Farid, M. (2022). Effect of Temperatures on Polyphenols during Extraction. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12042107

Autor, E., Cornejo, A., Bimbela, F., Maisterra, M., Gandía, L. M., & Martínez-Merino, V. (2022). Extraction of Phenolic Compounds from Populus Salicaceae Bark. Biomolecules, 12(4). https://doi.org/10.3390/biom12040539

Ayele, D. T., Akele, M. L., & Melese, A. T. (2022). Analysis of total phenolic contents, flavonoids, antioxidant and antibacterial activities of Croton macrostachyus root extracts. BMC Chemistry, 16(1), 1–9. https://doi.org/10.1186/s13065-022-00822-0

Damanik, M. (2025). The effect of storage time at room temperature on phytochemical screening and toxicity testing of acetone and ethyl acetate extracts of tinuktuk. https://doi.org/10.2478/9788368412017-047

Dembitsky, V. M., Gloriozova, T. A., & Poroikov, V. V. (2021). Antitumor profile of carbon-bridged steroids (Cbs) and triterpenoids. Marine Drugs, 19(6). https://doi.org/10.3390/md19060324

Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26(17), 1–16. https://doi.org/10.3390/molecules26175377

Dirgantara, S., Insanu, M., & Fidrianny, I. (2022). MEdical Properties of Ant Nest Palnt (Myrmecodia Genus): A Comprehensive Review. Macedonian Journal of Medical Science, 10(F), 97–103. https://doi.org/https://doi.org/10.3889/oamjms.2022.8481

Doughari, J. H., & Saa-Aondo, M. (2021). Phytochemical analysis of crude methanol extracts and antimicrobial activity of n-hexane fractions of methanol seed and pod extracts of prosopis africana on some selected microoganisms. Pharmacologyonline, 2, 121–137.

El Mannoubi, I. (2023). Impact of different solvents on extraction yield, phenolic composition, in vitro antioxidant and antibacterial activities of deseeded Opuntia stricta fruit. Journal of Umm Al-Qura University for Applied Sciences, 9(2), 176–184. https://doi.org/10.1007/s43994-023-00031-y

Guerriero, G., Berni, R., Muñoz-Sanchez, J. A., Apone, F., Abdel-Salam, E. M., Qahtan, A. A., Alatar, A. A., Cantini, C., Cai, G., Hausman, J. F., Siddiqui, K. S., Hernández-Sotomayor, S. M. T., & Faisal, M. (2018). Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes, 9(6). https://doi.org/10.3390/genes9060309

Hanifah, A., Sumirat, R., Soerya, S. F., & Aristri, M. A. (2025). Isolation and Characterization of Cellulose From Biomass: A Methodological Review. Agroindustrial Technology Journal, 9(1), 15–33. https://doi.org/http://doi.org/10.21111/atj.v9i1.14568

Khademi, F. (2024). Therapeutic Bioactives and Their Progressive Extraction , Fractionation , and Analytical Techniques : A Comprehensive Review. 13(December 2023), 20–35.

Kholif, A. E. (2023). A Review of Effect of Saponins on Ruminal Fermentation, Health and Performance of Ruminants. Veterinary Sciences, 10(7). https://doi.org/10.3390/vetsci10070450

Krisnaningsih, A. T. N., Brihandhono, A., & Rahayu, P. P. (2024). Enhancing bioactive content in Malus sylvestris peel extract for antioxidant source using microwave-assisted extraction (MAE) and predicting the potential of ant nests. F1000Research, 13, 653. https://doi.org/10.12688/f1000research.145898.1

Lohvina, H., Sándor, M., & Wink, M. (2022). Effect of ethanol solvents on total phenolic content and antioxidant properties of seed extracts of fenugreek (Trigonella foenum-graecum l.) varieties and determination of phenolic composition by hplc-esi-ms. Diversity, 14(1). https://doi.org/10.3390/d14010007

Manuhara, Y. S. W., Sugiharto, S., Kristanti, A. N., Aminah, N. S., Wibowo, A. T., Wardana, A. P., Putro, Y. K., & Sugiarso, D. (2022). Antioxidant Activities, Total Phenol, Flavonoid, and Mineral Content in the Rhizome of Various Indonesian Herbal Plants. Rasayan Journal of Chemistry, 15(4), 2724–2730. https://doi.org/10.31788/RJC.2022.1548024

Muflihah, Y. M., Gollavelli, G., & Ling, Y. C. (2021). Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 indonesian indigenous herbs. Antioxidants, 10(10), 1–15. https://doi.org/10.3390/antiox10101530

Mushtaq, Z., Khan, U., Seher, N., Shahid, M., Shahzad, M. T., Bhatti, A. A., & Sikander, T. (2021). Evaluation of antimicrobial, antioxidant and enzyme inhibition roles of polar and non-polar extracts of clitoria ternatea seeds. Journal of Animal and Plant Sciences, 31(5), 1405–1418. https://doi.org/10.36899/JAPS.2021.5.0342

Najmi, A., Javed, S. A., Al Bratty, M., & Alhazmi, H. A. (2022). Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules, 27(2). https://doi.org/10.3390/molecules27020349

Nisca, A., & Tanase, C. (2025). Approaches to Extracting Bioactive Compounds from Bark of Various Plants: A Brief Review. Plants, 14(18), 13–17. https://doi.org/10.3390/plants14182929

Pagani, E., Ropke, C. D., Soares, C. M., Perez, S. A. C., Benevides, P. J. C., Barbosa, B. S., Carvalho, A. C. B., & Behrens, M. D. (2024). Technology Readiness Level Roadmap for Developing Innovative Herbal Medicinal Products. Pharmaceuticals, 17(6), 1–23. https://doi.org/10.3390/ph17060703

Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., & Lewandowski, W. (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 14(8), 1–24. https://doi.org/10.3390/ma14081984

Prayitno., S. A., & Utami, D. R. (2024). Identifikasi Senyawa Fitokimia secara Kualitatif dari ekstrak etanol Daun Sirih Merah (Piper crocatum Ruiz and Pav.). HERCLIPS (Journal of Herbal, Clinical and Pharmaceutical Science), 6(1), 1–9. https://doi.org/10.30587/herclips.v6i01.8213

Prayitno, S. A., Utami, D. R., & Putri, S. N. . (2025). Phytochemicals Analysis and Antioxidant (IC50) Value of Dried and Fresh MAngrove (Rhizopora racemosa) LEaves extract for Herbal Drink Base. Journal of Tropical Food and Agroindustrial Technology, 6(1), 1–7. https://doi.org/10.21070/jtfat.v6i01.1643

Ramesh, M. M., Shankar, N. S., & Venkatappa, A. H. (2024). Driving/Critical Factors Considered During Extraction to Obtain Bioactive Enriched Extracts. Pharmacognosy Reviews, 18(35), 68–81. https://doi.org/10.5530/phrev.2024.18.7

Simões, R., Miranda, I., & Pereira, H. (2022). The Influence of Solvent and Extraction Time on Yield and Chemical Selectivity of Cuticular Waxes from Quercus suber Leaves. Processes, 10(11). https://doi.org/10.3390/pr10112270

Thaeabteh, A., Juma, S., Bader, M., KAraman, D., Scrano, L., Bufo, S. A., & Karaman, R. (2019). Herbivores, Cancerous Cells and Pathogens. Toxins, 11(656), 1–28.

Tripathi, S., Singh, S., Mishra, N., & Mishra, N. (2025). The Impact of Solvent Polarity on the Phenolic and Antioxidant Capacity of Green Coffee Beans (Robusta Species) Extracts. Current Research in Nutrition and Food Science, 13(2), 926–936. https://doi.org/10.12944/CRNFSJ.13.2.27

Tzanova, M., Atanasov, V., Yaneva, Z., Ivanova, D., & Dinev, T. (2020). Selectivity of current extraction techniques for flavonoids from plant materials. Processes, 8(10), 1–30. https://doi.org/10.3390/pr8101222

Usman, A., Mohammed, Y., Mohammed, H. O., Usaman, N. L., & Zakari, A. . (2020). 11. Usman.pdfPhytochemicals Screening and Antioxidant Activity of Balanites Aegyptiaca Root BArk Extract: Influence of Solvent. Comunication in Physical Science, 5(2), 156–164.

Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics, 10(3), 1–30. https://doi.org/10.3390/antibiotics10030318

Yati, L., Safari, A. D., Saputra, D. A., Muflihati, I., & Suhendriani, S. (2022). Minuman Serbuk Instan dari Kulit Buah Naga dengan Perbedaan Formulasi Asam dan Basa (pp. 24–34). https://doi.org/http://dx.doi.org/10.21111/atj.v6i1.7233

##submission.downloads##

Telah diserahkan

2025-10-27

Diterima

2025-11-18

Diterbitkan

2025-12-02

Cara Mengutip

Prayitno, S. A., Utami, D. R. ., Dini, K. I., Salsabila, A. T. ., & Sari, D. K. (2025). Screening and Identification of Secondary Metabolites of Ant Nest Plants From the Nabire Forest With Different Solvents. Agroindustrial Technology Journal, 9(2), 31–41. https://doi.org/10.21111/atj.v9i2.15255