The Impact of Time and Temperature of Drying on the Functional Composition of Kencur (Kaempferia galanga) var. Gading Powder
DOI:
https://doi.org/10.21111/atj.v9i2.15143Abstrak
Kencur or Kaempferia galanga is a source of bioactive compounds that can be used as a functional food. One of the varieties of K. galanga in Indonesia is K. galanga var. Gading. This cultivar originates from Nogosari, Boyolali, Central Java, an area recognized for its relatively high K. galanga production. Data from the Central Bureau of Statistics (BPS) of Boyolali Regency (2024) show that the productivity of K. galanga in Nogosari District exceeds 8 tons per hectare, making this cultivar one of the promising and widely cultivated varieties in Indonesia.. K. galanga has a short shelf life due to its moisture content; therefore, drying is considered an effective method to reduce its moisture content. This research aimed to determine the effect of drying time and temperature on the quality of K. galanga powder. This research used a factorial design with two factors: drying temperature (50ºC and 60ºC) and drying time (4, 6, 8 hours). K. galanga was washed, sliced, dried, ground, and analyzed for its chemical and microbial properties. The chemical properties included total phenolic content and antioxidant activity, while the microbial property was evaluated based on the total plate count. The The results showed that drying temperature at 60 °C for 6 h provided the highest total phenolic content (1.45 mg GAE/100 g w.b.), with antioxidant activities respectively from the tests using DPPH 1.47 mg Trolox/100 g w.b. and 7.90 mg Trolox/100 g w.b. by ABTS, which indicated a moderate antioxidant activity. Moreover, that treatment showed a reduction of 15.93% and a total plate count of 120 CFU/g. Keywords: Antioxidant activity, drying, K. galanga, total plate countReferensi
Aini, N., Mufandi, I., Jamilatun, S., & Rahayu, A. (2023). Exploring Cacao Husk Waste-Surface Modification, Characterization, and its Potential for Removing Phosphate and Nitrate Ions. Journal of Ecological Engineering, 24 (12), 282–292. https://doi.org/10.12911 /22998993/174003
Bilal, M., Ihsanullah, I., Younas, M., & Ul Hassan Shah, M. (2021). Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Separation and Purification Technology, 278, 119510. https://doi.org/https://doi. org/10.1016/j.seppur.2021.119510
Cherrat, S., Boulekbache-Makhlouf, L., Iqbal, J., Zeghichi-Hamri, S., Sabrina, S., Walker, G. (2019). Effect of different drying temperatures on the composition and antioxidant activity of ginger powder. Annals of the University Dunarea de Jos of Galati. 43. https://doi.org/10.35219/foodtechnology.2019.2.09.
Dhurhania, C. E., & Novianto, A. (2019). Uji kandungan fenolik total dan pengaruhnya terhadap aktivitas antioksidan dari berbagai bentuk sediaan sarang semut (Myrmecodia pendens). Jurnal Farmasi dan Ilmu Kefarmasian Indonesia, 5(2), 62. https://doi.org/10.20473/jfiki.v5i22018.62-68
Ecevit, K., Barros, A. A., Silva, J. M., & Reis, R. L. (2022). Preventing microbial infections with natural phenolic compounds. Future Pharmacology, 2(4), 00030. https://doi.org/10.3390/futurepharmacol2040030
ElGamal, R., Song, C., Rayan, A. M., Liu, C., Al-Rejaie, S., & ElMasry, G. (2023). Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. Agronomy, 13(6), 1580. https://doi.org/10.3390/agronomy13061580
Grande, T., Souid, A., Ciardi, M., Della Croce, C. M., Frassinetti, S., Bramanti, E., Longo, V., & Pozzo, L. (2023). Evaluation of antioxidant and antimicrobial activities of whole flours obtained from different species of Triticum genus. European Food Research and Technology, 249, 1575–1587. https://doi.org/10.1007/s00217-023-04238-5
Huang, Y., Sun, Y., Lu, T., & Chen, X. (2023). Effects of hot-air drying on the bioactive compounds, quality attributes, and drying and color change kinetics of coffee leaves. Journal of food science, 88(1), 214–227. https://doi.org/10.1111/1750-3841.16431
Jamilatun, S., Elisthatiana, Y., Aini, S. N., Mufandi, I., & Budiman, A. (2020). Effect of Temperature on Yield Product and Characteristics of Bio-oil From Pyrolysis of Spirulina platensis Residue. Elkawnie, 6(1), 96–108. https://doi.org/ 10.22373/ekw.v6i1.6323
Jauharotus, D. S., Vifta, R. L., & Susmayanti, W. (2023). Potensi antioksidan kombinasi ekstrak jahe merah (Zingiber officinale var. rubrum) dan bunga telang (Clitoria ternatea L.) dengan metode DPPH. Windi Susmayanti Journal of Holistics and Health Sciences, 5(2), 385–394.
Jimenez-Garcia, S. N., Vazquez-Cruz, M. A., Ramirez-Gomez, X. S., Beltran-Campos, V., Contreras-Medina, L. M., Garcia-Trejo, J. F., & Feregrino-Pérez, A. A. (2020). Changes in the content of phenolic compounds and biological activity in traditional Mexican herbal infusions with different drying methods. Molecules, 25(7), 1601. https://doi.org/10.3390/molecules25071601
Julianti, T.B., Bakar, M.F.A., & Wikantyasning, E.R. (2022). Phytochemical, Antioxidant Analysis and In Vitro Xanthine Oxidase Inhibitory Activity of Kaempferia parviflora and Kaempferia galanga: http://www.doi.org/10.26538/tjnpr/v6i12.14. (2022). Tropical Journal of Natural Product Research , 6(12), 1981-1985. https://www.tjnpr.org/index.php/home/article/view/1403
Lobiuc, A., Pavăl, N.-E., Mangalagiu, I. I., Gheorghiță, R., Teliban, G.-C., Amăriucăi-Mantu, D., & Stoleru, V. (2023). Future antimicrobials: Natural and functionalized phenolics. Molecules, 28(3), 1114. https://doi.org/10.3390/molecules28031114
Manalu, L.P., Adinegoro, H., Yustiningsih, N., Astuti, Luthfiyanti, R., Maisaroh, Purwanto, W., Subandrio, Pongtuluran, O.B., Atmaji, P., Hidayat, T., Henanto, H., Asgar, Ali, Nasori, Sofian, A., Triyono, Agus, Elya, Berna, Arif, Bin, A. (2025). Impact of drying methods on bioactive compounds and antioxidant properties of Kalanchoe ceratophylla, Scientifica, 7146758, 12 pages, https://doi.org/10.1155/sci5/7146758
Mustofa, A., Suhartatik, N., & Pratiwi, D. Y. V. (2024). Aktivitas antioksidan tepung labu kuning dari berbagai varietas dengan variasi suhu pengeringan. Agrointek, 18(3), 568–573. https://doi.org/10.21107/agrointek.v18i3.15936
Narra, F., Piragine, E., Benedetti, G., Ceccanti, C., Florio, M., Spezzini, J., Troisi, F., Giovannoni, R., Martelli, A., & Guidi, L. (2024). Impact of thermal processing on polyphenols, carotenoids, glucosinolates, and ascorbic acid in fruit and vegetables and their cardiovascular benefits. Comprehensive Reviews in Food Science and Food Safety, 23(6), e13426. https://doi.org/10.1111/1541-4337.13426
Nasution, A. S., Hadi, S., Silalahi, H., & Panjaitan, E. (2023). Effect of drying temperature on quality of dried red ginger (Zingiber officinale var. rubrum). Jurnal Teknologi Pertanian, 12(1), 107–117. https://doi.org/10.23960/jtep-l.v12i1.107-117
Nonglang, F.P., Khale, A. & Bhan, S. Phytochemical characterization of the ethanolic extract of Kaempferia galanga rhizome for antioxidant activities by HPTLC and GCMS. Futur J Pharm Sci 8, 9 (2022). https://doi.org/10.1186/s43094-021-00394-1
Oulahal, N., & Degraeve, P. (2022). Phenolic-rich plant extracts with antimicrobial activity: An alternative to food preservatives and biocides? Frontiers in Microbiology, 12, 753518. https://doi.org/10.3389/fmicb.2021.753518
Panyakaew, J., Chalom, S., Sookkhee, S., Saiai, A., Chandet, N., Meepowpan, P., Thavornyutikarn, P., Mungkornasawakul, P. (2021). Kaempferia Sp. extracts as UV protecting and antioxidant agents in sunscreen. Journal of Herbs, Spices & Medicinal Plants, 27, 37–56. https://doi.org/10.1080/10496475.2020.1777614
Patrón-Vázquez, J., Baas-Dzul, L., Medina-Torres, N., Ayora-Talavera, T., Sánchez-Contreras, Á., García-Cruz, U., & Pacheco, N. (2019). The Effect of Drying Temperature on the Phenolic Content and Functional Behavior of Flours Obtained from Lemon Wastes. Agronomy, 9(9), 474. https://doi.org/10.3390/agronomy9090474
Pham TN, Nguyen VT, Toan TQ, Cang MH, Bach LG, Van Muoi N. Effects of Various Processing Parameters on Polyphenols, Flavonoids, and Antioxidant Activities of Codonopsis javanica Root Extract. Natural Product Communications. 2020;15(9). doi:10.1177/1934578X20953276
Puyanda, I. R., & Gibran, H. A. (2024). Pengaruh lama perendaman temu kunci terhadap aktivitas penghambatan radikal. Jurnal Teknologi Pertanian, 13(1).
Riyanto, S., Martono, E., & Lestari, R. (2023). Study of microbiological quality and antioxidant activity of beras kencur drink with heating process. Indonesian Food and Nutrition Progress, 20(1), 15–24. https://doi.org/10.22146/ifnp.29725
Stephenus, F. N., Benjamin, M. A. Z., Anuar, A., & Awang, M. A. (2023). Effect of Temperatures on Drying Kinetics, Extraction Yield, Phenolics, Flavonoids, and Antioxidant Activity of Phaleria macrocarpa (Scheff.) Boerl. (Mahkota Dewa) Fruits. Foods, 12(15), 2859. https://doi.org/10.3390/foods12152859
Tomczyk, A., Kondracki, B., & Szewczuk-karpisz, K. (2023). modification of biochars as a method to improve its surface properties and efficiency in removing xenobiotics from aqueous media. Chemosphere, 312(P1), 137238. https://doi.org/10.1016/j.chemosphere.2022.137238
Warren-Walker, A., Beckmann, M., Watson, A., McAllister, S., & Lloyd, A. J. (2025). Effect of thermal processing by spray drying on key ginger compounds. Metabolites, 15(6), 350. https://doi.org/10.3390/metabo15060350
Yu, W., Lian, F., Cui, G., & Liu, Z. (2018). N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution. Chemosphere, 193, 8–16. https://doi.org/https://doi.org/10.1016/j.chemosphere.2017.10.134
Zang, Z., Wan, F., Jia, H., Ma, G., Xu, Y., Zhao, Q., Wu, B., Lu, H., & Huang, X. (2024). Developing effective radio frequency vacuum drying processes for moutan cortex: Effect on moisture migration, drying kinetics, physicochemical quality, and microstructure. Foods, 13(14), 2294. https://doi.org/10.3390/foods13142294
##submission.downloads##
Telah diserahkan
Diterima
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The author whose published manuscript approved the following provisions:
1. The right of publication of all material published in the journal / published in the Agroindustrial Technology Journal is held by the editorial board with the knowledge of the author (moral rights remain the author of the script).
2. The formal legal provisions for access to digital articles of this electronic journal are subject to the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0), which means that Agroindustrial Technology Journal reserves the right to save, transmit media or format, Database), maintain, and publish articles without requesting permission from the Author as long as it keeps the Author's name as the owner of Copyright.
3. Printed and electronically published manuscripts are open access for educational, research and library purposes. In addition to these objectives, the editorial board shall not be liable for violations of copyright law.
