PAPARAN DEBU DAN RISIKO GANGGUAN FUNGSI PERNAFASAN PADA PEKERJA DI INDUSTRI PENGOLAHAN BIJIH MINERAL: TINJAUAN LITERATUR SISTEMATIS

Penulis

  • Arif Susanto Magister Terapan Keselamatan Kesehatan Kerja, Sekolah Vokasi, Universitas Gajah Mada, Yogyakarta, Indonesia; Health Safety Environmental Department, Concentrating Division, PT Freeport Indonesia
  • Muhamad Rizky Yudhiantara Program Studi Magister Teknik Lingkungan, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Bandung, Indonesia; Health Safety Environmental Department, Concentrating Division, PT Freeport Indonesia
  • Edi Karyono Putro Program Doktor Teknik Lingkungan, Fakultas Teknik Sipil-Perencanaan-Kebumian, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia; Health Safety Environmental Department, Concentrating Division, PT Freeport Indonesia
  • Prayoga Kara Health Safety Environmental Department, Concentrating Division, PT Freeport Indonesia
  • Anthony Andorful Manuel Technical Services Department, Concentrating Division, PT Freeport Indonesia
  • Nurulia Hidayah Magister Terapan Keselamatan Kesehatan Kerja, Sekolah Vokasi, Universitas Gajah Mada, Yogyakarta, Indonesia

DOI:

https://doi.org/10.21111/jihoh.v9i1.12557

Kata Kunci:

Debu respirabel; Pajanan Debu; Penurunan fungsi pernafasan; Pengolahan bijih mineral

Abstrak

Pengolahan bijih mineral melibatkan beberapa proses yang menghasilkan debu, seperti penggilingan, penghancuran, dan flotasi. Debu yang dihasilkan, terutama partikel berukuran <10 μm, dapat terhirup dan terdeposit di paru-paru, sehingga berisiko menyebabkan penurunan fungsi pernafasan. Namun, berbagai faktor dapat mempengaruhi tingkat efek paparan debu terhadap kesehatan pekerja. Penelitian ini dilakukan dengan metode tinjauan literatur sistematis, menggunakan kata kunci “mineral ore processing”, “dust exposure”, dan “impaired lung function”. Pada basis data ilmiah seperti Science Direct, Google Scholar, dan ProQuest. Artikel ilmiah yang dipublikasikan antara tahun 2020 hingga 2024 menjadi fokus kajian. Hasil pemetaan literatur berdasarkan PRISMA-ScR menunjukkan sebanyak 15 artikel ilmiah relevan telah dianalisis. Penelitian ini mengkonfirmasi bahwa debu di industri pengolahan bijih mineral menjadi risiko kesehatan pernafasan yang signifikan bagi pekerja. Paparan debu dapat menyebabkan masalah kesehatan dari penurunan fungsi pernafasan hingga Penyakit Paru Obstruksi Kronis (PPOK). Komposisi kimia dan konsentrasi debu respirabel yang bervariasi, serta faktor lingkungan seperti kelembaban dan arah angin, turut mempengaruhi tingkat pajanan debu terhadap pekerja. Oleh karena itu, pengendalian debu secara efektif pada sumbernya dan penerapan manajemen risiko yang baik menjadi sangat penting untuk mengurangi paparan debu terhadap pekerja dan mencegah terjadinya penurunan fungsi pernapasan.

Referensi

ACGIH. TLVs and BEIs: Based on the documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, Ohio, The United States: The American Conference of Governmental Industrial Hygiene (ACGIH); 2022.

ISO. International Standarization Organization: 7708:1995(E) Air quality—particle size fraction definitions for health-related sampling. International Organisation for Standardization; 1995.

Noble TL, Parbhakar-Fox A, Berry RF, Lottermoser B. Mineral Dust Emissions at Metalliferous Mine Sites. Dalam: Lottermoser B, editor. Environmental Indicators in Metal Mining [Internet]. Cham: Springer International Publishing; 2017 [dikutip 18 April 2024]. hlm. 281–306. Tersedia pada: https://doi.org/10.1007/978-3-319-42731-7_16

Putro EK, Kusnadi SNF, Susanto A, Zannah M, Mahalisa R, Manuel AA. Penilian Risiko Paparan Debu Silika Terhadap Pekerja di Industri Pengolahan Bijih Mineral. Jurnal Kesehatan Vokasional. 29 Februari 2024;9(1):74–85.

Susanto A, Mauliku NE, Suhat S, Nugrahaeni DK. Penilaian Risiko Pajanan Dermal pada Penggunaan Bahan Berbahaya & Beracun (B3) di Industri Pengolahan Bijih Mineral. Jurnal Keselamatan Kesehatan Kerja dan Lingkungan. 2023;4(1):1–10.

Perret JL, Plush B, Lachapelle P, Hinks TSC, Walter C, Clarke P, dkk. Coal mine dust lung disease in the modern era. Respirology. 2017;22(4):662–70.

Peixoto MS, de Oliveira Galvão MF, Batistuzzo de Medeiros SR. Cell death pathways of particulate matter toxicity. Chemosphere. 1 Desember 2017;188:32–48.

Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health. 27 Agustus 2013;10(9):3886–907.

Wood C, Yates D. Respiratory surveillance in mineral dust-exposed workers. Breathe. Maret 2020;16(1):190632.

World Health Organization WH. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization; 2021.

Soemirat J, Ariesyadi HD. Toksikologi Lingkungan. Keenam. Yogyakarta: Gadjah Mada University Press; 2021.

Zilaout H, Houba R, Kromhout H. Temporal trends in respirable dust and respirable quartz concentrations within the European industrial minerals sector over a 15-year period (2002–2016). Occup Environ Med. 1 April 2020;77(4):268–75.

Chaulya SK, Trivedi R, Kumar A, Tiwary RK, Singh RS, Pandey PK, dkk. Air quality modelling for prediction of dust concentrations in iron ore mines of Saranda region, Jharkhand, India. Atmospheric Pollution Research. 1 Mei 2019;10(3):675–88.

Zychowski KE, Wheeler A, Sanchez B, Harmon M, Steadman Tyler CR, Herbert G, dkk. Toxic Effects of Particulate Matter Derived from Dust Samples Near the Dzhidinski Ore Processing Mill, Eastern Siberia, Russia. Cardiovasc Toxicol. 1 Oktober 2019;19(5):401–11.

Wang D, Zhou M, Liu Y, Ma J, Yang M, Shi T, dkk. Comparison of risk of silicosis in metal mines and pottery factories: a 44-year cohort study. Chest. 2020;158(3):1050–9.

Sepadi MM, Chadyiwa M, Nkosi V. Platinum Mine Workers’ Exposure to Dust Particles Emitted at Mine Waste Rock Crusher Plants in Limpopo, South Africa. International Journal of Environmental Research and Public Health. Januari 2020;17(2):655.

Neophytou AM, Ferguson JM, Costello S, Picciotto S, Balmes JR, Koutros S, dkk. Diesel exhaust and respiratory dust exposure in miners and chronic obstructive pulmonary disease (COPD) mortality in DEMS II. Environment International. 1 Maret 2024;185:108528.

Baluchová BM, Bačík P, Mamová A. The health impact of mineral dust air pollution on the global and local scale (on the example from Slovakia). Neuroendocrinology Letters. 2019;40:1.

Wippich C, Koppisch D, Pitzke K, Breuer D. Estimating nickel exposure in respirable dust from nickel in inhalable dust. International Journal of Hygiene and Environmental Health. 1 September 2021;238:113838.

Gholami A, Tajik R, Atif K, Zarei AA, Abbaspour S, Teimori-Boghsani G, dkk. Respiratory Symptoms and Diminished Lung Functions Associated with Occupational Dust Exposure Among Iron Ore Mine Workers in Iran. The Open Respiratory Medicine Journal [Internet]. 11 Februari 2020 [dikutip 19 April 2024];14(1). Tersedia pada: https://openrespiratorymedicinejournal.com/VOLUME/14/PAGE/1/

Kurth L, Laney AS, Blackley DJ, Halldin CN. Prevalence of spirometry-defined airflow obstruction in never-smoking working US coal miners by pneumoconiosis status. Occupational and environmental medicine. 2020;77(4):265–7.

Mensah MK, Mensah-Darkwa K, Drebenstedt C, Annam BV, Armah EK. Occupational respirable mine dust and diesel particulate matter hazard assessment in an underground gold mine in Ghana. Journal of Health and Pollution. 2020;10(25):200305.

Markovic Baluchova B, Bacik P, Mamova A. The Health Impact of Mineral Dust Air Pollution on the Global and Local Scale (on the example from Slovakia). Neuro endocrinology letters. 8 Oktober 2019;40:24–8.

Boente C, Zafra-Pérez A, Fernández-Caliani JC, Sánchez de la Campa A, Sánchez-Rodas D, de la Rosa JD. Source apportionment of potentially toxic PM10 near a vast metallic ore mine and health risk assessment for residents exposed. Atmospheric Environment. 15 Mei 2023;301:119696.

Sairanen M, Rinne M. Dust emission from crushing of hard rock aggregates. Atmospheric Pollution Research. 1 Maret 2019;10(2):656–64.

Chen YH, Nguyen D, Brindley S, Ma T, Xia T, Brune J, dkk. The dependence of particle size on cell toxicity for modern mining dust. Scientific Reports. 2023;13(1):5101.

Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free radical Biology and medicine. 2003;34(12):1507–16.

Valavanidis A. Oxidative Stress and Pulmonary Carcinogenesis Through Mechanisms of Reactive Oxygen Species. How Respirable Particulate Matter, Fibrous Dusts, and Ozone Cause Pulmonary Inflammation and Initiate Lung Carcinogenesis. Dalam: Chakraborti S, Chakraborti T, Das SK, Chattopadhyay D, editor. Oxidative Stress in Lung Diseases [Internet]. Singapore: Springer Singapore; 2019 [dikutip 24 Juni 2024]. hlm. 247–65. Tersedia pada: http://link.springer.com/10.1007/978-981-13-8413-4_13

Gold WM, Koth LL. Pulmonary function testing. Murray and Nadel’s Textbook of Respiratory Medicine. 2016;407.

Brown JS, Gordon T, Price O, Asgharian B. Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol. 10 April 2013;10:12.

##submission.downloads##

Diterbitkan

2024-10-29