Evaluation of Unmanned Aerial Vehicle (UAV) Control Range System using Lora-Based Communication System using Path Loss





Control System, Lo-Ra, Long Range System, QCZEK, Radio Frequency, Transmission system, UAV


AbstractThis research aims to evaluate the communication system between the ground control system and the Unmanned Aerial Vehicle (UAV) using the Lora communication system based on its Path Loss data. Lora itself is a 433 MHz-based communication system used for very long-distance communication. As we know, today UAV market used a 2.4 GHz-based communication system because it is cheaper than using 433MHz. But, although it is cheaper than 433MHz, a lot of devices used the same frequency like WiFi systems and another wireless electrical components. That condition creates a lot of signal interference so communication between the ground control system and the UAV becomes shorter. 433MHz is not a new technology for a communication system, this frequency is usually used for radio news and long-range data logging. It is rarely used 433 MHz frequency for transmitting a big package of data because 433 MHz frequency has a slow data transfer rate but has a long data transfer distance. From testing, we got an improvement of control range more than twice with Lo-Ra 433 MHz compared to the 2.4 GHz module.Keywords: Control System, Lo-Ra, Long Range System, Radio Frequency, Transmission system, UAV Abstrak[Evaluasi Sistem Jarak Kendali Kendaraan Udara Tanpa Awak (UAV) Menggunakan Sistem Komunikasi Berbasis Lora Menggunakan Path Loss] Penelitian ini bertujuan untuk mengevaluasi sistem komunikasi antara ground control system dengan Unmanned Aerial Vehicle (UAV) menggunakan sistem komunikasi Lora berdasarkan data Path Loss-nya. Lora sendiri merupakan sistem komunikasi berbasis 433 MHz yang digunakan untuk komunikasi jarak jauh. Seperti yang kita ketahui, pasar UAV saat ini menggunakan sistem komunikasi berbasis 2,4 GHz karena lebih murah daripada menggunakan 433MHz. Tapi, meski lebih murah dari 433MHz, banyak perangkat yang menggunakan frekuensi yang sama seperti sistem WiFi dan komponen listrik nirkabel lainnya. Kondisi tersebut menimbulkan banyak gangguan sinyal sehingga komunikasi antara ground control system dan UAV menjadi lebih singkat. 433MHz bukanlah teknologi baru untuk sistem komunikasi, frekuensi ini biasanya digunakan untuk berita radio dan data logging jarak jauh. Frekuensi 433 MHz jarang digunakan untuk transmisi paket data yang besar karena frekuensi 433 MHz memiliki kecepatan transfer data yang lambat namun memiliki jarak transfer data yang jauh. Dari pengujian, kami mendapatkan peningkatan jangkauan kendali lebih dari dua kali lipat dengan Lo-Ra 433 MHz dibandingkan dengan modul 2,4 GHz.Kata Kunci: Sistem Kontrol, Lo-Ra, Sistem Jarak Jauh, Frekuensi Radio, Sistem Trnsmisi, UAV

Author Biographies

Mokhammad Amin Hariyadi, UIN Maulana Malik Ibrahim Malang

UIN Maulana Malik Ibrahim Malang

Juniardi Nur Fadila, UIN Maulana Malik Ibrahim Malang

Informatic Engineering


[1] “E32-433T30D User Manual SX1278 433MHz 1W DIP Wireless Module.”[2] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T. Watteyne, “Understanding the Limits of LoRaWAN,” IEEE Communications Magazine, vol. 55, no. 9, 2017, doi: 10.1109/MCOM.2017.1600613.[3] C. Downey, “Understanding Wireless Range Calculations,” Wat Komt Hier, 2013.[4] Y. Esye and D. Haryanto, “RANCANG BANGUN RANGKAIAN PENERIMA FREQUENCY HOPPING SPREAD SPECTRUM ( FHSS ) DENGAN DEMODULASI DIGITAL AMPLITUDE SHIFT KEYING (ASK).”[5] “COMPUTER SIMULATION MODULATION-DEMODULATIN ANALOG AND DIGITAL.”[6] A. H. Jebril, A. Sali, A. Ismail, and M. F. A. Rasid, “Overcoming limitations of LoRa physical layer in image transmission,” Sensors (Switzerland), vol. 18, no. 10, 2018, doi: 10.3390/s18103257.[7] S. Rauh, J. Robert, M. Schadhauser, A. Heuberger, and A. U. Erlangen-nuremberg, “LPWAN Occupancy Model Parameter Identification for License Exempt sub-GHz Frequency Bands,” pp. 111–114, 2018.[8] P. Dani, P. Adi, and A. Kitagawa, “Performance Evaluation of E32 Long Range Radio Frequency 915 MHz based on Internet of Things and Micro Sensors Data,” vol. 10, no. 11, pp. 38–49, 2019.[9] M. G. al Zamil, M. Rawashdeh, S. Samarah, M. S. Hossain, A. Alnusair, and S. M. M. Rahman, “An Annotation Technique for In-Home Smart Monitoring Environments,” IEEE Access, vol. 6, pp. 1471–1479, Nov. 2017, doi: 10.1109/ACCESS.2017.2779158.[10] J. P. Tovar-Soto, C. F. Pareja-Figueredo, O. L. García-Navarrete, and L. C. Gutiérrez-Martínez, “Performance evaluation of lora technology for implementation in rural areas,” DYNA (Colombia), vol. 88, no. 216, 2021, doi: 10.15446/dyna.v88n216.88258.[11] G. Ferre and A. Giremus, “LoRa Physical Layer Principle and Performance Analysis,” in 2018 25th IEEE International Conference on Electronics Circuits and Systems, ICECS 2018, 2019. doi: 10.1109/ICECS.2018.8617880.[12] P. Edward, M. El-Aasser, M. Ashour, and T. Elshabrawy, “Interleaved Chirp Spreading LoRa as a Parallel Network to Enhance LoRa Capacity,” IEEE Internet Things J, vol. 8, no. 5, 2021, doi: 10.1109/JIOT.2020.3027100.[13] T. Handaru, “PROGRAM SIMULASI SINYAL CHIRP RADAR,” 2007.[14] P. K. Manoharan et al., “Low Frequency Radio Experiment (LORE),” in IOP Conference Series: Materials Science and Engineering, 2016, vol. 120, no. 1. doi: 10.1088/1757-899X/120/1/012014.[15] N. Blenn and F. Kuipers, “LoRaWAN in the Wild : Measurements from The Things Network”.[16] H. Jiang, C. Cai, X. Ma, Y. Yang, and J. Liu, “Smart Home Based on WiFi Sensing: A Survey,” IEEE Access, vol. 6. Institute of Electrical and Electronics Engineers Inc., pp. 13317–13325, Mar. 06, 2018. doi: 10.1109/ACCESS.2018.2812887.[17] A. Sutinjo, “Low-frequency radio astronomy engineering in Western Australia,” 2018. doi: 10.23919/radio.2017.8242257.[18] M. Iqbal, A. Y. M. Abdullah, and F. Shabnam, “An Application Based Comparative Study of LPWAN Technologies for IoT Environment,” in 2020 IEEE Region 10 Symposium, TENSYMP 2020, 2020. doi: 10.1109/TENSYMP50017.2020.9230597.