Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine

Authors

  • Widya Rizka Ulul Fadilah Universitas Muhammadiyah Malang
  • Dewi Agfiannisa Universitas Muhammadiyah Malang
  • Yufis Azhar Universitas Muhammadiyah Malang

DOI:

https://doi.org/10.21111/fij.v5i2.4449

Abstract

AbstrakSaham merupakan salah satu bentuk investasi yang mana merupakan surat berharga yang menjadi bukti kepemilikan seseorang atas suatu perusahaan. Pergerakan saham dari waktu ke waktu relatif tidak menentu dan tidak pasti, namun masih dapat diprediksi. Prediksi harga saham ini akan sangat berguna bagi investor untuk mengetahui bagaimana alur investasi bekerja pada setiap harga pada masing-masing harga saham yang berubah dari waktu ke waktu. Model prediksi pergerakan harga saham yang akurat dapat membantu para investor dalam pertimbangan pengambilan keputusan transaksi saham karena pergerakan harga saham yang cenderung non linier ini akan menyulitkan investor dalam melakukan prediksi. Dalam penelitian ini dilakukan prediksi harga saham PT. Telekomunikasi Indonesia menggunakan metode algoritma Support Vector Machine yang ditingkatkan kinerjanya menggunakan kernel RBF. Dari hasil pengujian dengan metode Support Vector Machine dihasilkan tingkat akurasi sebesar 0.9641 dan RMSE sebesar 0.0932. Pengujian juga dilakukan menggunakan algoritma k-Nearest Neighbors dengan tingkat akurasi sebesar 0.945 dan RMSE sebesar 0.1162. Dengan itu diketahui bahwa algoritma SVM memiliki tingkat akurasi yang lebih tinggi dan tingkat error yang lebih rendah dibangdingkan metode KNN.Kata kunci: prediksi, harga saham, support vector machine.  Abstract[Stock Price Prediction Analysis of PT. Indonesian Telecommunications Using Methods Support Vector Machine] Stock is a form of investment which is a form of securities which is a proof of someone's ownership of a company. The movement of shares from time to time is relatively uncertain, but still predictable. This stock price prediction will be very useful for investors to find out how the flow of investment works at each price on each stock price that changes from time to time. An accurate prediction model of stock price movements can help investors in considering the decision of stock transaction because the stock price movements that tend to be non-linear will make it difficult for investors to make predictions. In this research a prediction of the stock price of PT. Telekomunikasi Indonesia uses the Support Vector Machine algorithm method which is improved in performance using the RBF kernel. From the results of testing with the Support Vector Machine method the accuracy level is 0.9641 and the RMSE is 0.0932. Tests are also carried out using the k-Nearest Neighbors algorithm with an accuracy level of 0.945 and an RMSE of 0.1162. Therefore, it is known that the SVM algorithm has a higher level of accuracy and a lower error rate than the KNN method.Keywords: prediction, stock price, support vector machine.

References

[1] L. Septiningrum, H. Yasin, and S. Sugito, “Prediksi Indeks Harga Saham Gabungan Menggunakan Support Vector Regression (SVR) Dengan Algoritma Grid Search,” J. Gaussian, vol. 4, no. 2, pp. 315–321, 2015.[2] N. Dwi S, “Penerapan Algoritma Support Vector Machine untuk Prediksi Harga Emas,” J. Inform. Upgris, vol. 1, no. 1, pp. 10–19, 2015, doi: 10.26877/jiu.v1i1 Juni.805.[3] F. Ramadani, “Pengaruh Inflasi, Suku Bunga Dan Nilai Tukar Rupiah Terhadap Harga Saham Perusahaan Sektor Properti Dan Real Estate Yang Tercatat Di Bursa Efek Indonesia,” Manaj. Bisnis, vol. 6, no. 1, pp. 72–82, 2018, doi: 10.22219/jmb.v6i1.5392.[4] R. H. Kusumodestoni and S. Sarwido, “Komparasi Model Support Vector Machines (Svm) Dan Neural Network Untuk Mengetahui Tingkat Akurasi Prediksi Tertinggi Harga Saham,” J. Inform. Upgris, vol. 3, no. 1, 2017, doi: 10.26877/jiu.v3i1.1536.[5] Y. Ramdhani and A. Mubarok, “Analisis Time Series Prediksi Penutupan Harga Saham Antm.Jk Dengan Algoritma SVM Model Regresi,” Responsif, vol. 1, no. 1, pp. 77–82, 2019.[6] E. P. Sari, “Model Prediksi Harga Saham Media Sosial Berdasarkan Algoritma SVM Yang Dioptimasikan Dengan PSO,” Pilar Nusa Mandiri, vol. 12, no. 2, pp. 161–170, 2016.[7] F. R. Setiawan, “Prediksi Pergerakan Harga Saham dengan Metode Support Vector Machine ( SVM ) Menggunakan Trend Deterministic Data Preparation Program Studi Sarjana Ilmu Komputasi Fakultas Informatika Universitas Telkom Bandung,” 2018.[8] D. I. Pusphita Anna Octaviani, Yuciana Wilandari, “Penerapan Metode Klasifikasi Support Vector Machine (Svm) Pada Data Akreditasi Sekolah Dasar (Sd) Di Kabupaten Magelang,” J. Gaussian, vol. 3, no. 4, pp. 811–820, 2014.[9] M. R. Faisal. and D. T. Nugrahadi, Belajar Data Science: Klasifikasi dengan Bahasa Pemrograman R. 2017.[10] A. M. Puspitasari, D. E. Ratnawati, and A. W. Widodo, “Klasifikasi Penyakit Gigi Dan Mulut Menggunakan Metode Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 2, pp. 802–810, 2018.[11] S. Sudin et al., “Analisis Jenis Pertanyaan Berbahasa Indonesia pada Question and Answering System Menggunakan Metode Support Vector Machine (SVM ),” vol. 12, pp. 72–80, 2019.[12] K. C. H. Chen, Hing Cheung So. Yiu Tong Chan and Y. Chen, “Simple Formulas for Bias and Mean Square Error Computation,” vol. 30, no. 4.[13] B. Lareno, “Analisa Dan Perbandingan Akurasi Model Prediksi Rentet Waktu Arus Lalu Lintas Jangka Pendek,” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 6, no. 3, p. 148, 2015, doi: 10.22303/csrid.6.3.2014.148-158.

Downloads

Submitted

2020-06-07

Accepted

2020-09-26

Published

2020-09-26

Issue

Section

Articles