Real Time Database Seleksi Wajah Digital Menggunakan Algoritma CAMshift

Authors

DOI:

https://doi.org/10.21111/fij.v5i1.3642

Keywords:

Real Time, Hue Color, Face Selection, CAMshift Algorithm, Database Faces

Abstract

AbstrakPerkuliahan yang ditempuh 4-5 tahun mempengaruhi perkembangan fisik. Penelitian ini menggunakan data video digital mahasiswa. Hasil rekaman video digunakan untuk data set menentukan ciri tertentu yang dimiliki mahasiswa nantinya tersimpan dalam katalog database file digital.  Dimulai dari konversi video .mp4 menjadi format .AVI. Algoritma CAMShift menggunakan dasar warna HSV untuk pelacakan posisi wajah (tracking) dan mengenal wajah (recognition). Video durasi 1-2 detik menghasilkan 45-200 frame format PNG. Algoritma CamShift melakukan penghitungan nilai Hue data sample. Hasil seleksi area bounding box disimpan dalam database wajah. Tracking wajah menggunakan Meanshift switching Matlab–OpenGL. Penelitian bertujuan mendokumentasikan profil wajah berbentuk digital berdasarkan warna dominan kulit. Hasil uji pencocokan wajah dilakukan pada beberapa video play, keberhasilan deteksi: 100% terseleksi, 45%-60%, 80-90%, disimpulkan sekitar 50%-100% berhasil. Gerakan wajah akan tertangkap centroid bounding box, bila warna wajah dominan Hue.Kata kunci: Algoritma Camshift; Database Wajah; Real Time; Seleksi Wajah; Warna Hue; Abstract[Real Time for Digital Face Database Selection Using Camshift Algorithm] Education taken 4-5 years affects physical development. This study uses student digital video data. The recording results are used to identify certain characteristics possessed by a student later stored in the digital file database catalog. The stages of the study consisted of identification, recognition and matching of faces. It starts from converting .mp4 videos to .AVI format. The CAMShift algorithm uses basic HSV colors for tracking face position (tracking) and faces recognition. 1-2 seconds video produces 45-200 frames PNG file. The research aims to document the digital profile of a face based on the dominant color of the skin. The face matching test results were carried out on several video play, the success of detection: 100% selected, 45%-60%, 80-90%, concluded around 50%-100% successful. Face movements will be caught by the centroid bounding box, if the color of the face is dominant in HueKeywords: Camshift Algorithm, Database Faces Face Selection; Hue Color; Real Time

Author Biography

Anita Sindar RM Sinaga, STMIK Pelita Nusantara

ST degree from ST-INTEN Bandung, Indonesia  and obtained M.TI degree from Bina Nusantara University Jakarta, Indonesia. Former Director of NNI Poliprofesi. Former Director of Polytechnic Gihon. Currently as a Lecturer in Informatics Engineering STMIK Penusa. 

References

[1] Victoria, Indra Permana Solihin, “Pendeteksi Wajah Secara Realtime Menggunakan Metode Eigenface”, Seminar Nasional Informatika, Sistem Informasi Dan Keamanan Siber (SEINASI-KESI), hal: 126-131, Desember 2018, [2] Naser Jawas, “Pelacakan Gerakan Tangan Untuk Pengenalan Gerak-Isyarat”, IT Journal, Vol. 5 No. 1, hal 13-23, April 2017. [3] Sisilia Daeng Bakka Mau, “Pengaruh Histogram Equalization Untuk Perbaikan Kualitas Citra Digital”, Jurnal SIMETRIS, Vol 7 No 1 hal : 177-182, April 2016. [4] Anita Sindar Ros Maryana Sinaga, Arjon Samuel Sitio, “Sistem Deteksi Biometrik Keunikan Wajah Secara Real Time”, Indonesia Journal of Applied Informatics (IJAI), Vol 4, No 1, hal: 30-35, 2019. [5] Luki Wahyu Hendrawan, Mohammad Ramdhani, Dadan Nur Ramadan, “Rancang Bangun Sistem Pelacakan Objek Secara Real Time Berdasarkan Warna”, e-Proceeding of Applied Science : Vol.2, No.1 pp: 383-388, April 2016. [6] Galih Fathul Rohmi, Wildan Budiawan Zulfikar, Yana Aditia Gerhana, “Implementasi Citra Digital Berdasarkan Nilai HSV Untuk Mengidentifikasi Jenis Tanaman Mangga Menggunakan Algoritma K-Nearest Neighbor”, INSIGHT, Volume 1 No. , 1 hal: 142-147, | April 2018. [7] Ahmad Fahriannur, Ronny Mardiyanto, Meilana Siswanto, “Sistem Pelacakan Objek Menggunakan Kombinasi Algoritma Optical Flow dan Template Matching”, Jurnal Teknologi dan Sistem Komputer, 6(1), 13-17, 2018. [8] Jefry Sunupurwa Asri, Gerry Firmansyah, “Implementasi objek detection dan tracking menggunakan deep learning untuk pengolahan citra digital”. Konferensi Nasional Sistem Informasi 2018, STMIK Atma Luhur Pangkalpinang, 8 – 9, hal : 717-723, Maret 2018.. [9] Xianyu Chen, Mingru Jin, Yang Xu, Wenfeng Shen, Feng Qiu, "Video object tracking based on SSD and camshift," Proc. SPIE 10836, 2018 International Conference on Image and Video Processing, and Artificial Intelligence, 29 October 2018. [10] Musab Coúkuna, Sencer Ünala, “Implementation of Tracking of a Moving Object Based on Camshift Approach with a UAV.”, 9th International Conference Interdisciplinarity in Engineering, INTER-ENG 2015, 8-9, Procedia Technology 22 ( 2016 ) 556 – 561, October 2015. [11] Dhanar Intan Surya Saputra, Wahyu Septi Anjar, Kurnia Aswin Nuzul, Ramadhan, Riki Aji Pamungkas“, Pelacakan Dan Deteksi Wajah Menggunakan Video Langsung Pada Webcam”, Jurnal Telematika Vol. 10 No. 1, hal : 50-59, Februari 2017. [12] V. M. Monica and K. G. J. Nigel, "Object tracking based on Kalman filter and gait feature extraction," 2017 International Conference on Inventive Systems and Control (ICISC), Coimbatore, pp. 1-5, 2017. [13]Techno Kita. (2020). Techno Kita - Info Terkini Dunia Teknologi Dan Gadget. [online] Available at: https://www.technokita.my.id. [Accessed 13 Jan.2020].

Downloads

Submitted

2019-11-14

Accepted

2020-02-27

Published

2020-02-27

Issue

Section

Articles