Enhancing Covid-19 Diagnosis: Glrlm Texture Analysis And Kelm For Lung X-Ray Classification
Abstract
Abstrak This study aims to diagnose COVID-19 using GLRLM feature extraction, known for its high accuracy, and optimize Kernel Extreme Learning Machine (KELM) with Genetic Algorithm (GA) for improved computational efficiency, along with Principal Component Analysis (PCA) for data reduction. The gamma values in KELM are optimized using GA, yielding the best solution function. Results reveal that at angles of 0°, 45°, and 135°, the optimal gamma value with KELM is 1, while at 90°, GA determines it to be 1.35. This adjustment demonstrates the critical role of gamma values in achieving optimal performance. Performance analysis of various classification methods demonstrates that GLRLM-PCA-Optimized KELM outperforms others, achieving an accuracy exceeding 97%, particularly notable at 90° angles. This study shows that the importance of hyperparameter optimization in enhancing classification accuracy, revealing a significant improvement of over 1% compared to non-optimized models. Kata kunci: COVID-19, GLRLM, KELM, Feature Reduction, PCA Abstract Penelitian ini bertujuan untuk mendiagnosis COVID-19 menggunakan ekstraksi fitur GLRLM yang dikenal dengan akurasi tinggi, dan mengoptimalkan Kernel Extreme Learning Machine (KELM) dengan Algoritma Genetika (GA) untuk meningkatkan efisiensi komputasi, bersama dengan Principal Component Analysis (PCA) untuk reduksi data. Nilai gamma dalam KELM dioptimalkan menggunakan GA, menghasilkan fungsi solusi terbaik. Hasil penelitian menunjukkan bahwa pada sudut 0°, 45°, dan 135°, nilai gamma optimal dengan KELM adalah 1, sedangkan pada 90°, GA menentukan nilainya menjadi 1,35. Penyesuaian ini menunjukkan peran penting nilai gamma dalam mencapai kinerja optimal. Analisis kinerja berbagai metode klasifikasi menunjukkan bahwa GLRLM-PCA-KELM yang Dioptimalkan mengungguli yang lain, mencapai akurasi lebih dari 97%, terutama mencolok pada sudut 90°. Studi ini menyoroti pentingnya optimasi hyperparameter dalam meningkatkan akurasi klasifikasi, mengungkapkan peningkatan signifikan lebih dari 1% dibandingkan dengan model KELM konvesional. Keywords: COVID-19, GLRLM, KELM, Feature Reduction, PCADownloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2024 Dian C Rini Novitasari, Alvin Nuralif Ramadanti , Dina Zatusiva Haq
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Please find the rights and licenses in the Fountain of Informatics Journal (FIJ). By submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author(s)' Warranties
The author warrants that the article is original, written by the stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author, and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User/Public Rights
FIJ's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, FIJ permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and FIJ on distributing works in the journal and other media of publications. Unless otherwise stated, the authors are public entities as soon as their articles got published.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
- Copyright and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in own future works, including lectures and books,
- The right to reproduce the article for own purposes,
- The right to self-archive the article (please read out deposit policy),
- The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (Jurnal Optimasi Sistem Industri).
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. FIJ will not be held liable for anything that may arise due to the author(s) internal dispute. FIJ will only communicate with the corresponding author.
6. Royalties
Being an open accessed journal and disseminating articles for free under the Creative Commons license term mentioned, author(s) aware that FIJ entitles the author(s) to no royalties or other fees.
7. Miscellaneous
FIJ will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. FIJ's editors may modify the article to a style of punctuation, spelling, capitalization, referencing, and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.