Implementasi Metode Naive Bayes pada Sistem Diagnosis Penyakit Mata (Studi Kasus Poli Mata Rumah Sakit Islam Jemursari Surabaya)
Implementation of Naive Bayes Method on Eye Disease Diagnosis System (Ophthalmology Poly Case Study at Jemursari Islamic Hospital Surabaya)
Abstract
Abstrak Lamanya waktu tunggu dalam pemeriksaan dokter mata di rumah sakit dapat meningkatkan risiko terpapar infeksi virus lain. Maka dari itu diperlukannya sebuah sistem diagnosis yang cepat, akurat dan efektif untuk mengurangi lamanya waktu tunggu. Oleh karena itu, penelitian ini bertujuan untuk membuat sistem diagnosis penyakit mata berbasis web dengan menggunakan metode klasifikasi Naïve Bayes. Sistem dikembangkan dengan mengambil dataset berupa data rekam medik pasien sebanyak 6074 data. Atribut pada dataset yang akan digunakan dalam sistem ini meliputi umur, jenis kelamin, keluhan, dan diagnosis. Sistem ini dibangun dengan metode Naïve Bayes sebagai algoritma data mining yang menggunakan bahasa pemrograman Python sebagai tools pengolahan data. HTML, CSS, JS, dan PHP sebagai bahasa pemrograman pembangun website yang digunakan sebagai tempat visualisasi dan inputan data oleh user yang didukung MySQL sebagai database penyimpanan data. Hasil yang didapatkan dari sistem diagnosis penyakit mata berbasis web dengan perbandingan metode Gaussian Naïve Bayes dan Bernoulli Naïve Bayes ini mampu mendapatkan akurasi sebesar 93.42 % dan 90.79%, sehingga menjadi sistem pendukung keputusan yang dapat membantu dokter dalam mengambil keputusan diagnosis penyakit mata pasien. Dengan adanya sistem ini, dapat mempermudah proses diagnosis penyakit mata serta dapat membantu dokter dalam mengambil keputusan yang tepat dalam waktu singkat. Kata kunci: Klasifikasi Penyakit Mata, Sistem Diagnosis Penyakit Mata, Naïve Bayes Abstract [Implementation of Naive Bayes Method on Eye Disease Diagnosis System (Ophthalmology Poly Case Study at Jemursari Islamic Hospital Surabaya)] The waiting time during an eye doctor's examination at the hospital can increase the risk of exposure to other virus infections. Therefore, a fast, accurate, and effective diagnostic system is needed to reduce waiting time. This study aims to develop a web-based eye disease diagnosis system using the Naïve Bayes classification method. The system was developed using a dataset consisting of 6074 patient medical records. The attributes of the dataset used in this system include age, gender, complaints, and diagnosis. The system was built using the Naïve Bayes method as a data-mining algorithm using the Python programming language for data processing. HTML, CSS, JS, and PHP are website builder programming languages used for visualization and data input by users, supported by MySQL as the data storage database. The results obtained from the web-based eye disease diagnosis system with a comparison of Gaussian Naïve Bayes and Bernoulli Naïve Bayes methods achieved accuracies of 93.42% and 90.79%, respectively, making it a decision support system that can assist doctors in making diagnoses of patients' eye diseases. With this system, the process of diagnosing eye diseases can be simplified and doctors can be assisted in making the right decisions in a short time. Keywords: Classification of Eye Diseases, System for Diagnosing Eye Diseases, Naïve Bayes.Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2024 Raihan Febrianto Grahadi, Rokhmatul Insani, S. T., M. T., Berlian Rahmy Lidiawaty, S.ST., M.MT.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Please find the rights and licenses in the Fountain of Informatics Journal (FIJ). By submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author(s)' Warranties
The author warrants that the article is original, written by the stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author, and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User/Public Rights
FIJ's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, FIJ permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and FIJ on distributing works in the journal and other media of publications. Unless otherwise stated, the authors are public entities as soon as their articles got published.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
- Copyright and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in own future works, including lectures and books,
- The right to reproduce the article for own purposes,
- The right to self-archive the article (please read out deposit policy),
- The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (Jurnal Optimasi Sistem Industri).
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. FIJ will not be held liable for anything that may arise due to the author(s) internal dispute. FIJ will only communicate with the corresponding author.
6. Royalties
Being an open accessed journal and disseminating articles for free under the Creative Commons license term mentioned, author(s) aware that FIJ entitles the author(s) to no royalties or other fees.
7. Miscellaneous
FIJ will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. FIJ's editors may modify the article to a style of punctuation, spelling, capitalization, referencing, and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.