Optimasi Parameter Random Forest Menggunakan Grid Search Untuk Analisis Time Series
Abstract
Abstrak Dalam membeli dan menjual di bursa saham, prediksi harga saham memainkan peran penting bagi para investor. Namun, prediksi harga saham merupakan tantangan karena dipengaruhi oleh faktor-faktor yang sulit diprediksi, seperti kondisi pasar, kinerja perusahaan, dan berita ekonomi. Oleh karena itu, penelitian ini bertujuan untuk menganalisis deret waktu harga penutupan saham Microsoft Corporation menggunakan algoritma Random Forest (RF) dan mengoptimalkan parameter algoritma dengan menggunakan metode optimisasi grid parameter. Data yang digunakan meliputi rentang waktu dari 1 Maret 1986 hingga 25 Mei 2023 dengan total 9378 catatan dan 6 atribut. Setelah pengumpulan dan pemrosesan data, termasuk verifikasi nilai yang hilang, data dibagi menjadi data pelatihan dan pengujian menggunakan validasi pemisahan. Selain itu, validasi silang digunakan untuk membandingkan algoritma-algoritma dan memilih algoritma RF sebagai model terbaik berdasarkan nilai RMSE terendah. Tingkat optimalisasi parameter dicapai dengan mengoptimalkan parameter grid, dengan Jumlah pohon dan Kedalaman maksimal sebagai parameter yang dioptimalkan. Analisis Paired Two Sample T-Test juga mengungkapkan perbedaan yang signifikan antara RMSE sebelum dan setelah optimisasi. Kesimpulannya, penelitian ini memberikan kontribusi yang signifikan dalam penggunaan algoritma RF dan metode optimisasi parameter grid dalam analisis deret waktu harga penutupan, dengan potensi aplikasi yang signifikan dalam pengambilan keputusan investasi di pasar saham Kata kunci: Microsoft Corporation, Optimize Parameter Grid, Prediksi, Random Forest, Time Series. Abstract [Random Forest Parameter Optimization Using Grid Search for Time Series Analysis]. This study focuses on analyzing the Time Series of Microsoft Corporation stock closing prices and predicting future stock prices using the Random Forest (RF) algorithm. The research aims to address the challenges of stock price prediction due to unpredictable factors like market conditions, company performance, and economic news. The dataset used covers a period from March 1, 1986, to May 25, 2023, comprising 9378 records and 6 attributes. Data preprocessing involved handling missing values and splitting the data into training and testing sets using split validation. Cross-validation was employed to compare different algorithms, with the RF algorithm selected as the best model based on the lowest Root Mean Square Error (RMSE) value. The study further optimized the RF algorithm's parameters, specifically the number of trees and max depth, using the Optimize Parameter Grid method. The optimization process successfully demonstrated a significant improvement in RMSE through a Paired two-sample T-test analysis. Overall, this research contributes to the effective use of the RF algorithm and parameter optimization techniques for analyzing Time Series data, with potential applications in supporting investment decisions in the stock market.Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2024 dzikri iskandar
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Please find the rights and licenses in the Fountain of Informatics Journal (FIJ). By submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author(s)' Warranties
The author warrants that the article is original, written by the stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author, and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User/Public Rights
FIJ's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, FIJ permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and FIJ on distributing works in the journal and other media of publications. Unless otherwise stated, the authors are public entities as soon as their articles got published.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
- Copyright and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in own future works, including lectures and books,
- The right to reproduce the article for own purposes,
- The right to self-archive the article (please read out deposit policy),
- The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (Jurnal Optimasi Sistem Industri).
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. FIJ will not be held liable for anything that may arise due to the author(s) internal dispute. FIJ will only communicate with the corresponding author.
6. Royalties
Being an open accessed journal and disseminating articles for free under the Creative Commons license term mentioned, author(s) aware that FIJ entitles the author(s) to no royalties or other fees.
7. Miscellaneous
FIJ will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. FIJ's editors may modify the article to a style of punctuation, spelling, capitalization, referencing, and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.