Design Automatic Drip Irrigation Integrated of Solar Energy Soil Moisture Based as a Efforts To Optimize The Use of Water

Authors

  • THABED THOLIB BALADRAF University of Jember

DOI:

https://doi.org/10.21111/agrotech.v6i3.5019

Keywords:

Sustainable, Solar Energy, Drip Irrigation, Dry Land, Renewable Energy

Abstract

Abstract: Agriculture plays a role in providing foods, feeds and energies. Irrigation is an important factor that has a direct impact on crop quality and quantity. Indonesia has 70% dry land which produces food commodities, namely corn, soybeans, cassava and sweet potato. Solar energy based soilmosture integrated automatic drip irrigation has excellent long terms prospects for sustainable agriculture. This study aims to determine the design of solar energy-based integrated solar drip irrigation system, to determine the potential of solar powered drip irrigation, and to determine agricultural innovations that play a role in handling water availability problems. Researchers create irrigation by utilizing renewable energy that it is environmentally friendly. Researchers made a design and carried out three tests, namely testing of soil moisture standards to test automation of tools, testing of solar panels to determine power, and testing the comparison of automatic drip irrigation integrated solar energy based on soilmosture with manual irrigation. The test results show that the tool works automatically when the humidity of the soil is less than 30%, the integrated solar energy drip irrigation will work, the solar panel test produces 0.6 kWh of maximum power which means it is sufficient and the comparison test of automatic drip irrigation is integrated with solar energy based on soilmosture. Manual irrigation, it shows that the sun energy-based integrated solar drip irrigation is 55% more effective than manual irrigation.

Author Biography

THABED THOLIB BALADRAF, University of Jember

Departement Agroindustrial Technology, University of Jember

References

BPS. 2019. Luas Lahan Menurut Penggunaan di Indonesia. Badan Pusat Statistik, Jakarta. BPS. 2016. Indikator Pertanian/Agricultural Indicators. Badan Pusat Statistik, Jakarta. Burchfield, E., Williams, N. E., & Carrico, A. R. 2018. Rescaling drought mitigation in rural Sri Lanka. Journal Regional Environmental Change. 18(2): 2495-2503. Ehret, D., dan B. Frey. 2012. Effects of Drip Irrigation Configuration and Rate on Yield and Fruit Quality of Young Highbush Blueberry Plants. Journal HORTSCIENCE. 47(3): 414-421. Eko, W., dan Affan, B. 2017. Prototype Penyiram Tanaman Otomatis dengan Sensor Kelembaban Tanah Berbasis Atmega 328. Jurnal Elektro. 2(1): 2-11. Khalimi, F. dan Z. Kusuma. 2018. Analisis Ketersediaan Air pada Pertanian Lahan Kering di Gunungkudul Yogyakarta. Jurnal Tanah dan Sumberdaya Lahan. 5(1): 721-725. Kusumaningrum, S. 2019. Pemanfaatan Sektor Pertanian sebagai Penunjang Pertumbuhan Perekonomian Indonesia. Jurnal Transaksi. 11(1): 80-89. Mihunov, V., N. Lam, L. Zou, R. Rohli, N. Bushra, M. Reams, dan J. Argote. 2018. Community resilience to drought hazard in the South-Central United States. Annals of the American Association of Geographers. 108(3): 739–755. Mulyani, A. dan M. Sarwani. 2013. Karakteristik dan Potensi Lahan Suboptimal untuk Pengembangan Pertanian di Indonesia. Jurnal Sumberdaya Lahan. 7(1): 47-58. Noer, H. 2011. Optimalisasi Pemanfaatan Sumberdaya Air Melalui Perbaikan Pola Tanam dan Perbaikan Teknik Budidaya Pada Sistem Usahatani. Indonesian Journal of Agricultural Economics. 2(2): 169-182. Pasquale, S., C. Theodore, F. Elias. 2012. Crop Yield Response to Water. FAO Drainage and Irrigation Paper No. 66. Food and Agriculture Organization, Rome. http://www.fao.org/3/i2800e/i2800e.pdf (Diakses pada 9 September 2020). Rana, M., dan A. Rahim. 2014. Manuring And Irrigation Effect On Growth, Flowering, And Fruiting of Dragon Fruit (Hylocereus Undatus Haw) In Bangladesh. 2014. IJCBS Research Paper. 1(6): 28-32. Ridwan, D. 2013. Model Jaringan Irigasi Tetes Berbasis Bahan Lokal untuk Pertanian Lahan Sempit. Jurnal Irigasi. 8(2): 90-98. Savitri, E. dan I. Pramono. 2018. Identifikasi dan Mitigasi Kerentanan Kekeringan Das Moyo. Jurnal Penelitian Pengelolaan Daerah Aliran Sungai. 2(2): 173-187. Smith, M., R. Allen, J. Monteith, A. Perrier, L. Pereira, dan A. Segeren. 1991. Report on The Expert Consultation on Procedures for Revision of FAO Guidelines for Prediction of Crop Water Requirements. Food and Agriculture Organization of the United Nations, Rome. inis.iaea.org/collection/NCLCollectionStore/Public/29/062/29062763.pdf (Diakses pada tanggal 10 September 2020). Togatorop, A. 2017. Modernisasi Pertanian Terhadap Pemakaian Pupuk Dalam Meningkatkan Taraf Hidup Petani di Desa Sirisirisi Kecamatan Doloksanggul Sumatera Utara. JOM FISIP. 4(2): 1-15. Udiana, I., dan W. Bunganaen. 2014. Perencanaan Sistem Irigasi Tetes (Drip Irrigation) di Desa Besmarak Kabupaten Kupang. Jurnal Teknik Sipil. 3(1): 63-74. Widiastuti, I., dan D. S. Wijayanto. 2018. Implementasi Teknologi Irigasi Tetes pada Budidaya Tanaman Buah Naga. Jurnal Keteknikan Pertanian. 6(1): 1-8. Yanto, H., A. Tusi, S. Triyono. 2014. Aplikasi Sistem Irigasi Tetes Pada Tanaman Kembang Kol (Brassica Oleracea Var. Botrytis L. Subvar. Cauliflora Dc) Dalam Greenhouse. Jurnal Teknik Pertanian Lampung. 3(2): 141-154. Zou, L., J. Xia, dan D. She. 2017. Effects of large-scale climate patterns and human activities on hydrological drought: a case study in the Luanhe River basin, China. Journal Water Resource Management. 76(3): 1687–1710.

Downloads

Published

2020-12-01

How to Cite

BALADRAF, T. T. (2020). Design Automatic Drip Irrigation Integrated of Solar Energy Soil Moisture Based as a Efforts To Optimize The Use of Water. Gontor Agrotech Science Journal, 6(3), 455–472. https://doi.org/10.21111/agrotech.v6i3.5019