Phenotype Evaluation and Estimation of Genetic Parameter of Baby Corn From Two Generation Selfing and Sibbing

Authors

  • Nailan Nabila Universitas Pembangunan Nasional "Veteran" Yogyakarta
  • Yudiwanti Wahyu Institut Pertanian Bogor

DOI:

https://doi.org/10.21111/agrotech.v9i1.9620

Keywords:

baby corn, heritability, progenitor, sibbing, selfing

Abstract

Baby corn is consumed widely in Indonesia, but special corn varieties for baby corn production are not available until now. The objectives of this study were to evaluate phenotypes, estimate the genetic parameters from two generations of selfing and sibbing, and identify the genotypes to develop as baby corn variety. This study was conducted using a completely randomized block design with three replications. Genetic materials used consist of 19 genotypes. They were four genotypes S0, HS1, S1, S2 and three genotypes of HS2. Progenitors(S0) were Laksmi, Golden, Hawaii, and Baruna belonging sweet corn type. Baby corn’s phenotypes from two generations sibbing were more vigor than selfing. Families of HS2 dan S2 have a higher percentage of class A marketable cobs than generations before. Two generations sibbing and selfing increased genetic variances and broad-sense heritability. Families of HS2 had better phenotypic performance than S2, the percentage of class A marketable cobs was higher than S0 and HS1, number of cobs per plant was the highest broad-sense heritability estimation. HS2 families were considered to develop as open-pollinated baby corn varieties.

References

Ahsan, M. Z., Majidano, M. S., Bhutto, H., Soomro, A. W., Panhwar, F. H., Channa, A. R., & Sial, K. B. (2015). Genetic variability, coefficient of variance, heritability and genetic advance of some Gossypium hirsutum L. accessions. Journal of Agricultural Science, 7(2), 147–151. https://doi.org/10.5539/jas.v7n2p147

Al-Naggar, A., Atta, M., Ahmed, M., & Younis, A. (2016). Genetic parameters controlling inheritance of agronomic and yield traits of maize (Zea mays L.) under elevated plant density. Journal of Advances in Biology & Biotechnology, 9(3), 1–19. https://doi.org/10.9734/jabb/2016/28413

Archana, K. A., Hosamani, J., Deshpande, S. K., Bhat, J. S., Kachapur, R. M., & Mummigatti, U. v. (2021). Identification of transgressive segregants among newly derived F 4 inbred maize lines (Zea mays L.) for baby corn characteristics. Journal of Pharmacognosy and Phytochemistry, 10(2), 404–411. https://www.phytojournal.com/archives/2021/vol10issue2/PartE/10-2-34-262.pdf

Begum, S., Alam, S., Amiruzzaman, M., & Rohman, M. (2018). Heritability, character relationship and path coefficient analysis in agronomic traits of baby corn over different environments. Journal of Experimental Agriculture International, 19(6), 1–10. https://doi.org/10.9734/jeai/2017/38529

Cascão, L. M., Santana, P. N. de, Costa, N. V., Crispim Filho, A. J., Resende, M. P. M., & Melo, P. G. S. (2022). Inbreeding depression and genetic variability of populations for green maize production. Revista Ceres, 69(6), 709–719. https://doi.org/10.1590/0034-737x202269060010

Chauhan, J. S., Choudhury, P. R., Singh, K. H., & Thakur, A. K. (2022). Recent trends in crop breeding, the varietal induction in seed chain and its impact on food grain production in India. Indian Journal of Genetics and Plant Breeding (The), 82(03), 259–279. https://doi.org/10.31742/isgpb.82.3.1

de Freitas, J. P. X., da Silva Santos, V., & de Oliveira, E. J. (2016). Inbreeding depression in cassava for productive traits. Euphytica, 209(1), 137–145. https://doi.org/10.1007/s10681-016-1649-7

Efendi, R., Priyanto, S. B., & Azrai, M. (2021). Daya gabung dan aksi gen komponen hasil jagung profilik hasil tinggi menggunakan analisis line X tester. Jurnal Agro, 8(1), 113–129. https://doi.org/10.15575/9209

[FAO] Food and Agriculture Organization. (2007). Codex Alimentarius : fresh fruits and vegetables. FAO United Nation.

Gayatonde, V., Shahi, J. P., Vennela, P. R., & Srivastava, K. (2021). Assessment of maintenance breeding methods in maize (Zea mays L.). Maydica Electronic Publication, 66(14), 1–18. https://doi.org/https://doi.org/10.1016/S0169-5347(02)02489-8

Islam Matin, M. Q., Uddin, Md. S., Rohman, Md. M., Amiruzzaman, M., Azad, A. K., & Banik, B. R. (2017). Genetic Variability and Path Analysis Studies in Hybrid Maize (<i>Zea mays</i> L.). American Journal of Plant Sciences, 08(12), 3101–3109. https://doi.org/10.4236/ajps.2017.812209

Kirti, S., Kumar, A., & Sharma, V. K. (2022). Evaluation of genetic variability and diversity for yield and yield attributing traits among inbred lines of baby corn. The Pharma Innovation Journal, 11(10), 499–504. https://www.thepharmajournal.com/archives/2022/vol11issue10/PartG/11-9-275-181.pdf

Nabila, N., Wahyu, Y., & Widodo, W. D. (2022). Determination of genetic parameters and inbreeding depression of half-sib and selfing families to developed as baby corn variety. In Current Topics in Agricultural Sciences Vol. 6 (pp. 58–65). Book Publisher International (a part of Sciencedomain International). https://doi.org/10.9734/bpi/ctas/v6/3525e

Nascimento, M. R., Santos, P. R., Coelho, F. C., Jaeggi, M. E. P. C., Costa, K. D. S., & Souza, M. N. (2018). Biometric analysis in maize genotypes suitable for baby corn production in organic farming system. Horticultura Brasileira, 36(3), 419–425. https://doi.org/10.1590/s0102-053620180322

Nietlisbach, P., Keller, L. F., & Postma, E. (2016). Genetic variance components and heritability of multiallelic heterozygosity under inbreeding. Heredity, 116(1), 1–11. https://doi.org/10.1038/hdy.2015.59

Oliveira, A. S., Miranda Filho, J. B., & Reis, E. F. (2015). Variability and inbreeding in semiexotic maize populations. Genetics and Molecular Research, 14(1), 1184–1199. https://doi.org/10.4238/2015.February.6.21

Porcher, E., & Lande, R. (2016). Inbreeding depression under mixed outcrossing, self-fertilization and sib-mating. BMC Evolutionary Biology, 16(105), 1–14. https://doi.org/10.1186/s12862-016-0668-2

Priya, P. B., Pradeep, T., Sumalini, K., Vishnu, D., Reddy, V., & Supriya, K. (2019). Effect of different mating systems on magnitude of inbreeding depression in maize. The J. Res. PJTSAU, 47(4), 9–20. https://epubs.icar.org.in/index.php/TJRP/article/view/108407

Rani, R., Sheoran, R. K., Soni, P. G., Kaith, S., & Sharma, A. (2017). Baby corn: a wonderful vegetable. International Journal of Science, Environment and Technology, 6(2), 1407–1412. https://www.ijset.net/journal/1697.pdf

Rathod, S. D., Shinde, G. C., & Shinde, S. D. (2021). Genetic variability and path coefficient analysis studies in forage maize genotypes (Zea mays L.). Journal of Pharmacognosy and Phytochemistry, 10(1), 2764–2768. https://www.phytojournal.com/archives/2021/vol10issue1/PartAM/10-1-330-586.pdf

Roth, M., Beugnot, A., Mary-Huard, T., Moreau, L., Charcosset, A., & Fiévet, J. B. (2022). Improving genomic predictions with inbreeding and nonadditive effects in two admixed maize hybrid populations in single and multienvironment contexts. Genetics, 220(4), 1–18. https://doi.org/10.1093/genetics/iyac018

Samudin, S. bin, Khalik, J. Moh. A., Akbar, R., Muliati, M., & Mustakin, M. (2021). Parameter genetik kultivar-kultivar jagung local pada cekaman salinitas sedang. Jurnal Agro, 8(1), 55–67. https://doi.org/10.15575/10280

Sutaryo, B. (2014). Parameter genetik sejumlah genotip padi di lahan sawah berpengairan teknis dan tadah hujan. Berita Biologi, 13(1), 23–29. https://doi.org/https://doi.org/10.14203/beritabiologi.v13i1.650

Syukur, M., Sujiprihati, S., & Yunianti, R. (2018). Teknik Pemuliaan Tanaman: Vol. Cetakan III (S. Nugroho & Febriani, Eds.; Revisi I). Penebar Swadaya.

Theodorou, K., & Couvet, D. (2015). The efficiency of close inbreeding to reduce genetic adaptation to captivity. Heredity, 114(1), 38–47. https://doi.org/10.1038/hdy.2014.63

Downloads

Published

2023-06-27

How to Cite

Nabila, N., & Wahyu, Y. (2023). Phenotype Evaluation and Estimation of Genetic Parameter of Baby Corn From Two Generation Selfing and Sibbing. Gontor Agrotech Science Journal, 9(1), 57–66. https://doi.org/10.21111/agrotech.v9i1.9620

Issue

Section

Articles