The Test Fungi Growth Physiology of Trichoderma sp. and Gliocladium sp. from Citrus Plants

Authors

  • Unun - Triasih National Research and Innovation Agency
  • Sri Widyaningsih Organisasi Riset dan Pangan, Pusat Riset Hortikultura dan Perkebunan

DOI:

https://doi.org/10.21111/agrotech.v9i1.8604

Abstract

One of the problems of citrus cultivation is disease attack which can cause a decrease in production during harvest. There are antagonistic fungi from citrus plants that can be used to control pathogens, namely Gliocladium sp. and Trichoderma sp. Antagonistic fungi will be able to control pathogens optimally if they have growth conditions that match their environment. This study aims to determine the growth development of Trichoderma sp. and Gliocladium sp. at several temperatures, media, exposure lengths, and types of light. The treatments used were four different temperatures (20°C, 25°C, 30°C, 35°C), three media (PDA, PDAY, and CMA), several exposure times (24 hours of light and 24 hours of dark, 8 hours of light and 16 hours of darkness, 16 hours of light and 8 hours of darkness) and the type of light (light from a reading lamp placed very close, light from a lamp placed habitually, and dark wrapped in carbon). The treatment used a completely randomized design (CRD) and was repeated 5 times. The test results showed that the two isolates could develop optimally on PDA and PDAY media with the best temperature of 20°C-25°C. In addition, testing of various rays showed the results of the fastest development by Trichoderma sp. under natural light treatment. Furthermore, the best length exposure test was Trichoderma sp. with a lighting time of 12 hours light and 12 hours dark. In general, the development of the two antagonistic fungal isolates had relatively the same optimal development conditions, but Trichoderma sp. has better development on various tests.

References

Agrios G. (1998) Plant Pathology, In: Noriega Group, editor. 3rd ed. Mexico: Academic Press. 803pp.

Ahmed. K.M. (1985). Effect of temperature and light on the growth and sporulation of Colletotrichum gloesosporiodes Penz bangle. J Bot. 14: 155-159.

Alabouvette, C., Olivain, C. and Steinberg, C. (2006). Biological control of plant diseases: the European situation. Eur J Plant Pathol .114:329–341.

Alam, M.S., M.F. Begum, M.A. Sarkar, M.R. Islam and M.S. Alam. (2001). Effect of temperature, light and media on growth, sporulation, formation of pigments and pycnidia of Botryodiplodia theobromae Pat. Pak. J. Bio. Sci. 4(10): 1224-1227.

Chen, C.L., Kuo, H.C., Tung, S.Y., Hsu, P.W.C., Wang, C.L., Seibel, C., Schmoll, M., Chen, R.S. and Wang, T.F. (2012). Blue light acts as a double-edged sword in regulating

sexual development of Hypocrea jecorina(Trichoderma reesei). PLoS ONE 7, e44969.

Daryaei A, Jones EE, Glare TR, Falloon RE. (2016). Nutrient amendments affect Trichoderma atroviride conidium production, germination and bioactivity. Biol Control. 93:8–14.

Daryaei A, Jones EE, Glare TR, Falloon RE. (2016). Biological fitness of Trichoderma atroviride during long-term storage, after production in different culture conditions. Biocontrol Sci Technol. 26:86–103.

Domsch K.H., W. Gams and T.H. Anderson. (2007). Compendium of soil fungi. Second Edition, IHWVerlag, Germany.

Eveleigh, D.E. (1985). Trichoderma. In: Demainand, A.L. and Solomon N.A. (eds) Biology of Industrial Microorganisms. Benjamin Cummings Publishing Co., California, USA, pp. 487–509.

Friedl, M.A., Kubicek, C.P. and Druzhinina, I.S. (2008). Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl Environ Microbiol. 74:245.

Friedl, M.A., Kubicek, C.P. and Druzhinina, I.S. (2008a). Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Applied and Environmental Microbiology . 74:245–250.

Friedl, M.A., Schmoll, M., Kubicek, C.P. and Druzhinina, I.S. (2008b). Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. Microbiology. 154:1229–1241.

Gupta V, Sharma AK. (2013). Assesment of optimum temperature of Trichoderma harzianum by monitoring radial growth and population dynamic in different compost manure and different temperatur. Octa J Biosci. 1 (2): 151-157.

Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. (2004). Trichoderma species-opportuninistic, avirulent plant symbionts. Nature Rev Microbiol . 2: 43-56.

Horwitz, B.A., Gressel, J. and Malkin, S. (1984). The quest for Trichoderma cryptochrome. In: Senger, H.(ed.) Blue Light Effects in Biological Systems. Springer-Verlag, Berlin, pp. 237–249.

Jash, S.; Majumdar, N.; Pan, S. (2003). Comparative morphometry and asexual spore productivity among some species and isolates. Journal of Interacadiemicia. 7:265-268

Kandula, D., Jones, E., Stewart, A., McLean, K. and Hampton, J. (2015). Trichoderma species for biocontrol of soil-borne plant pathogens of pasture species. Biocontrol Sci Technol . 25:1052–1069.

Mukherjee, P.K. and Kenerley, C.M. (2010). Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Applied and Environmental Microbiology. 76:2345–2352.

Nugroho, T.T., Y. Nurulita., dan S. Devi. (2009). Produksi Kitinase Trichoderma asprellum TNC52 dan TNJ63 Galur Lokal Riau Menggunakan Limbah Kulit Udang. Laporan Penelitian Unggulan Lokal. Pekanbaru: Lembaga Penelitian Universitas Riau.

Nurbailis, Martinius, Azniza V. (2014). Keanekaragaman jamur saprofit pada rizosfir tanaman cabai sistem konvensional dan organik yang berpotensi mengendalikan Colletotrichum gloeosporoides penyebab penyakit antraknosa pada cabai. Jurnal Hama dan Penyakit Tumbuhan Tropika . 14 (1): 16-24.

Nurbailis, Martinius, Verry Azniza. (2018). Short Communication: Viability and environmental effect to conidial germination of antagonistic fungi that potential as biological control of Colletotrichum gloeosporoides caused antracnose disease on chili. Biodiversitas. 19(3).

Prabhat, K., Naem, F., Firoz, NK. (2015). Effect of Different Growth Media and Physical Factors on Biomass Production of Trichoderma viride. People’s Journal scientific Research. 8 : 11-17.

Rewal, N., Grewal, J.S. (1989). Inheritance of resistance to Botrytis cinerea Pers. in Cicer arietinum L.. Euphytica. 44:61–63

Rossi-Rodrigues BC. (2009). Comparative growth of Trichoderma strains in different nutritional sources, using bioscreen c automated system. Braz. J. Microbiol 40:404-410

Rudresh DL, Shivaprakash MK, Prasad RD. (2005). Effect of combined application of Rhizobium, phosphate solubilizing bacterium and spp. on growth, nutrient uptake and yield of chickpea. Appl Soil Ecol. 28(2):139-46.

Seibel, C., Gremel, G., do Nascimento Silva, R., Schuster, A., Kubicek, C.P. and Schmoll, M. (2009). Light dependent roles of the G protein a subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei). BMC Biology. 7(58).

Shahid M, Srivastava M, Sharma A, Kumar V, Pandey S, Singh A. (2013). morphological, molecular identification and ssr marker analysis of a potential strain of Trichoderma/hypocrea for production of a bioformulation. J Plant Pathol Microbiol. 4 (10): 1-7.

Shahid M, Srivastava M, Sharma A, Kumar V, Pandey S, Singh A. (2013). morphological, molecular identification and ssr marker analysis of a potential strain of Trichoderma/hypocrea for production of a bioformulation. J Plant Pathol Microbiol. 4 (10): 1-7.

Sharma RL, Singh BP, Thakur MP, Thapak SK. (2005). Effect of Media, Temperature, pH and Light on the Growth and Sporulation of Fusarium oxysporum f. sp. Lini (Bolley) Snyder and Hensan. Ann Pl ProtecSci . 13:172-174.

Singh A, Shahid M, Srivastava M, Pandey S, Sharma A, Kumar V. (2014). Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virol Mycol . 3 (1): 535-546.

Soenartiningsih, Nurasiah Djaenuddin, dan M. Sujak Saenong. (2014). Efektivitas Trichoderma sp. dan Gliocladium sp. sebagai Agen Biokontrol Hayati Penyakit Busuk Pelepah Daun pada Jagung. Penelitian Pertanian Tanaman Pangan. 33(2).

Stewart, A. (2001). Commercial biocontrol-reality or fantasy. Aust Plant Pathol . 30:127–131.

Syatrawati. (2007). Parasitisme gliocladium sp. terhadap rhizoctonia solani sebagai penyebab penyakit rebah kecambah ßpada jagung secara in-vitro. Prosiding Seminar Ilmiah dan Pertemuan Tahunan PEI dan PFI XVI Komda Sul-Sel . ISBN: 979-95025-6-7 ISBN 979-95025-6-7.

Thrall, P.H., Oakeshott, J.G., Fitt, G., Southerton, S., Burdon, J.J., Sheppard, A., Russell, R.J., Zalucki, M. et al. (2011). Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro ecosystems. Evol Appl .4: 200–215.

Yüksel Gezgin , Derya Maral Gül, Seçil Sözer Şenşatar, Can Uraz Kara, Sayit Sargın, Fazilet Vardar Sukan and Rengin Eltem. (2019). Evaluation of Trichoderma atroviride and Trichoderma citrinoviride growth profiles and their potentials as biocontrol agent and biofertilizer. Turkish Journal of Biochemistry. 45(2).

Downloads

Published

2023-06-27

How to Cite

Triasih, U. .-., & Widyaningsih , S. (2023). The Test Fungi Growth Physiology of Trichoderma sp. and Gliocladium sp. from Citrus Plants. Gontor Agrotech Science Journal, 9(1), 1–10. https://doi.org/10.21111/agrotech.v9i1.8604

Issue

Section

Articles