INTEGRASI ROTASI TANAMAN DAN PERIODE KRITIS PENGENDALIAN GULMA GUNA MENINGKATKAN RESILIENSI EKOLOGIS DAN STABILITAS HASIL

Integrating Crop Rotation and Critical Periods of Weed Control to Enhance Ecological Resilience and Yield Stability: A Review

Authors

  • Bela Tri Wijayanti Diploma Tiga Agribisnis, Sekolah Vokasi, Universitas Sebelas Maret, Surakarta Jl. Kolonel Sutarto No. 150K, Jebres, Kota Surakarta, Jawa Tengah 57126
  • Qaanitatul Hakim Ipaulle Program Studi Agroteknologi, Fakultas Sains dan Teknologi, Universitas Darussalam Gontor, Ponorogo Jl. Raya Siman, Ponorogo, Jawa Timur, Indonesia, 63471
  • Aulia Adillah Diploma Tiga Agribisnis, Sekolah Vokasi, Universitas Sebelas Maret, Surakarta Jl. Kolonel Sutarto No. 150K, Jebres, Kota Surakarta, Jawa Tengah 57126

DOI:

https://doi.org/10.21111/agrotech.v11i02.15437

Keywords:

Ecological Resilience, Yield Stability, Crop Rotation, Critical Period of Weed Control (CPWC)

Abstract

Meeting global food demands amidst climate volatility and resource scarcity has historically driven agricultural intensification. However, this pursuit of maximized yields through continuous monoculture and high agrochemical inputs has precipitated severe ecological costs, including biodiversity erosion, soil degradation, and heightened vulnerability to biotic stressors. While Sustainable Land Management (SLM) offers a restorative framework, its core principle of minimal soil disturbance often exacerbates weed pressure, creating a trade-off between ecological preservation and crop productivity. This extensive review consolidates systematic literature from 2000 to 2024 to critically assess the combined impact of Crop Rotation and the Critical Period of Weed Control (CPWC) in effectively addressing this agronomic challenge. The analysis demonstrates that crop rotation serves as the ecological foundation, restoring soil multifunctionality, restructuring microbial networks, and disrupting pest cycles. Complementing this, the CPWC functions as a vital tactical tool for precision management, allowing farmers to restrict weed interventions to specific phenological windows. This integration minimizes soil disturbance and chemical reliance without compromising harvest outcomes. The review concludes that coupling the systemic resilience of crop rotation with the management efficiency of CPWC offers a robust pathway for sustainable intensification, effectively balancing long-term ecological integrity with the imperative of yield stability.

References

Agomoh, I.V., Drury, C.F., Phillips, L.A., Reynolds, W.D., Yang, X., 2020. Increasing crop diversity in wheat rotations increases yields but decreases soil health. Soil Sci. Soc. Am. J. 84 (1), 170–181. https://doi.org/10.1002/saj2.20000.

Arebu, H., 2021. Effect of critical period of weed competition and its management option in sweet corn [Zea mays (L.) var. saccharata strut] production: a Review. Agric. Rev. 42 (3), 308–314.

Bainard, L.D., Navarro-Borrell, A., Hamel, C., Braun, K., Hanson, K., Gan, Y., 2017. Increasing the frequency of pulses in crop rotations reduces soil fungal diversity and increases the proportion of fungal pathotrophs in a semiarid agroecosystem. Agric. Ecosyst. Environ. 240, 206–214. https://doi.org/10.1016/j.agee.2017.02.020.

Baraibar, B., Westerman, P.R., Carrion, ´ E., Recasens, J., 2009. Effects of tillage and irrigation in cereal fields on weed seed removal by seed predators. J. Appl. Ecol. 46 https://doi.org/10.1111/j.1365-2664.2009.01614.x.

Barbieri, P., Pellerin, S., Seufert, V., Nesme, T., 2019. Changes in crop rotations would impact food production in an organically farmed world. Nat. Sustain. 2 (5), 378–385. https://doi.org/10.1038/s41893-019-0259-5.

Bommarco, R., Kleijn, D., Potts, S.G., 2013. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238. https://doi. org/10.1016/j.tree.2012.10.012

Borase, D.N., Nath, C.P., Hazra, K.K., Senthilkumar, M., Singh, S.S., Praharaj, C.S., Singh, U., Kumar, N., 2020. Long-term impact of diversified crop rotations and nutrient management practices on soil microbial functions and soil enzymes activity. Ecol. Indic. 114, 106322. https://doi.org/10.1016/j.ecolind.2020.106322.

Buhler, D.D., Stoltenberg, D.E., Becker, R.L., Gunsolus, J.L., 1994. Perennial weed populations after 14 years of variable tillage and cropping practices. Weed Sci. 42 https://doi.org/10.1017/s0043174500080280.

Cappelli, S.L., Domeignoz-Horta, L.A., Loaiza, V., Laine, A.-L., 2022. Plant biodiversity promotes sustainable agriculture directly and via belowground effects. Trends Plant Sci. 27, 674–687. https://doi.org/10.1016/j.tplants.2022.02.003

Carvalheiro, L. G., Veldtman, R., Shenkute, A. G., Tesfay, G. B., Pirk, C. W. W., Donaldson, J. S., & Nicolson, S. W. (2011). Natural and within-farmland biodiversity enhances crop productivity. Ecology Letters, 14(3), 251–259. https://doi.org/10.1111/j.1461-0248.2010.01579.x

Chauhan, B.S., Johnson, D.E., 2010. The role of seed ecology in improving weed management strategies in the tropics. Adv. Agron. https://doi.org/10.1016/s0065- 2113(10)05006-6.

Chen, Q.-L., Ding, J., Zhu, Y.-G., He, J.-Z., & Hu, H.-W. (2020). Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environment International, 140, 105766. https://doi.org/10.1016/j.envint.2020.105766

Chu, S.A.D., Cassida, K.A., Singh, M.P., Burns, E.E., 2022. Critical period of weed control in an interseeded system of corn and alfalfa. Weed Sci. 70 (6), 680–686.

Colbach, N., Busset, H., Roger-Estrade, J., Caneill, J., 2014. Predictive modelling of weed seed movement in response to superficial tillage tools. Soil Tillage Res. 138, 1–8.

Cordell, M. L., Brye, K. R., Longer, D. E., & Gbur, E. E. (2007). Residue Management Practice Effects on Soybean Establishment and Growth in a Young Wheat-Soybean Double-Cropping System. Journal of Sustainable Agriculture, 29(2), 97–120. https://doi.org/10.1300/j064v29n02_08

Costa, A., Bommarco, R., Smith, M.E., Bowles, T., Gaudin, A.C., Watson, C.A., AlarcON, ´ R., Berti, A., Blecharczyk, A., Calderon, F.J., Culman, S., Deen, W., Drury, C.F., Garcia, A.G.Y., Garc´IA-D´IAz, A., Plaza, E.H., Jonczyk, K., J¨ ack, O., Mart´INez, L.N., Montemurro, F., Morari, F., Onofri, A., Osborne, S.L., PasamON, ´ J.L. T., Sandstrom, ¨ B., Sant´IN-MontanyA, ´ I., Sawinska, Z., Schmer, M.R., Stalenga, J., Strock, J., Tei, F., Top, C.F.E., Ventrella, D., Walker, R.L., Vico, G., 2024. Crop rotational diversity can mitigate climate-induced grain yield losses. Glob. Change Biol. 30 (5), e17298. https://doi.org/10.1111/gcb.17298.

Crespo, C., Wyngaard, N., Rozas, H. S., Studdert, G. A., Barraco, M., Gudelj, V., Barbagelata, P., & Barbieri, P. (2021). Effect of intensified cropping sequences on soil physical properties in contrasting environments. CATENA, 207, 105690–105690. https://doi.org/10.1016/j.catena.2021.105690

Cui, Z.L., Zhang, H.Y., Chen, X.P., Zhang, C.C., Ma, W.Q., Huang, C.D., Zhang, W.F., Mi, G.H., Miao, Y.X., Li, X.L., Gao, Q., Yang, J.C., Wang, Z.H., Ye, Y.L., Guo, S.W., Lu, J.W., Huang, J.L., Lv, S.H., Sun, Y.X., Liu, Y.Y., Peng, X.L., Ren, J., Li, S.Q., Deng, X.P., Shi, X.J., Zhang, Q., Yang, Z.P., Tang, L., Wei, C.Z., Jia, L.L., Zhang, J.W., He, M.G., Tong, Y.N., Tang, Q.Y., Zhong, X.H., Liu, Z.H., Cao, N., Kou, C.L., Ying, H., Yin, Y.L., Jiao, X.Q., Zhang, Q.S., Fan, M.S., Jiang, R.F., Zhang, F.S., Dou, Z.X., 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555 (7696), 363–366. https://doi.org/10.1038/nature25785.

De Deyn, G.B., Raaijmakers, C.E., Van Ruijven, J., Berendse, F., Van Der Putten, W.H., 2004. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos 106, 576–586. https://doi.org/10.1111/ j.0030-1299.2004.13265.x

Derrouch, D., Dessaint, F., G.F.C, B., 2021. Weed community diversity in conservation agriculture: post-adoption changes. Agric. Ecosyst. Env. 312 https://doi.org/ 10.1016/j.agee.2021.107351.

Donald, P.F., Sanderson, F.J., Burfield, I.J., van Bommel, F.P.J., 2006. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric. Ecosyst. Environ. 116, 189–196.

Drost, S. M., Rutgers, M., Wouterse, M., de Boer, W., & Bodelier, P. L. E. (2020). Decomposition of mixtures of cover crop residues increases microbial functional diversity. Geoderma, 361, 114060. https://doi.org/10.1016/j.geoderma.2019.114060

Dufour, L.J., 2025. carbon dynamics in soils–does the diversity of organic inputs matter?, PhD thesis. Swedish University of Agricultural Sciences.

Gantoli, G., Ayala, V. R., & Gerhards, R. (2013). Determination of the Critical Period for Weed Control in Corn. Weed Technology, 27(1), 63–71. https://doi.org/10.1614/wt-d-12-00059.1

Garland, G., Edlinger, A., Banerjee, S., Degrune, F., García-Palacios, P., Pescador, D.S., Herzog, C., Romdhane, S., Saghai, A., Spor, A., Wagg, C., Hallin, S., Maestre, F.T., Philippot, L., Rillig, M.C., van der Heijden, M.G.A., 2021. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2 (1), 28–37. https://doi.org/10.1038/ s43016-020-00210-8

Garland, G., Edlinger, A., Banerjee, S., Degrune, F., García-Palacios, P., Pescador, D.S., Herzog, C., Romdhane, S., Saghai, A., Spor, A., Wagg, C., Hallin, S., Maestre, F.T., Philippot, L., Rillig, M.C., van der Heijden, M.G.A., 2021. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2 (1), 28–37. https://doi.org/10.1038/ s43016-020-00210-8

Gould, I.J., Quinton, J.N., Weigelt, A., De Deyn, G.B., Bardgett, R.D., 2016. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol. Lett. 19, 1140–1149. https://doi.org/10.1111/ele.12652.

Harmoko, H., Munawar, H., Bahri, S., Andarwulan, N., Tjahjono, D.H., Kartasasmita, R. E., Fern´ andez-Alba, A.R., 2024. Application of the QuEChERS method combined with UHPLC-QqQ-MS/MS for the determination of isoprocarb and carbaryl pesticides in Indonesian coffee. Anal. Methods 16, 4093–4103.

Hartmann, M., Six, J., 2023. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 4 (1), 4–18. https://doi.org/10.1038/s43017-022-00366- w

Hasanuzzaman, M., Bhuyan, M.H.M.B., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J. A., Fujita, M., Fotopoulos, V., 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9, 681. https://doi.org/10.3390/antiox9080681.

Heap, I.M., 1997. The occurrence of herbicide-resistant weeds worldwide. Pestic. Sci. 51, 235–243. https://doi.org/10.1002/(SICI)1096-9063(199711)51:3<235::AIDPS649>3.0.CO;2-N.

Hevia, V., Carmona, C. P., Azcárate, F. M., Torralba, M., Alcorlo, P., Ariño, R., Lozano, J., Castro-Cobo, S., & González, J. A. (2015). Effects of land use on taxonomic and functional diversity: a cross-taxon analysis in a Mediterranean landscape. Oecologia, 181(4), 959–970. https://doi.org/10.1007/s00442-015-3512-2

Hobbs, P.R., Sayre, K., Gupta, R., 2008. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B. 363, 543–555. https://doi.org/ 10.1098/rstb.2007.2169.

Holland, J.M., Hutchison, M.A.S., Smith, B., Aebischer, N.J., 2006. A review of invertebrates and seed-bearing plants as food for farmland birds in Europe. Ann. Appl. Biol. 148, 49–71. https://doi.org/10.1111/j.1744-7348.2006.00039.x

Hooper, D.U., Chapin III, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D.M., Loreau, M., Naeem, S., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35. https://doi. org/10.1890/04-0922

Hosseini, P., Karimi, H., Babaei, S., Mashhadi, H.R., Oveisi, M., 2014. Weed seed bank as affected by crop rotation and disturbance. Crop Prot. 64 https://doi.org/10.1016/j. cropro.2014.05.022.

Hu, L., Robert, C. A. M., Cadot, S., Zhang, X., Ye, M., Li, B., Manzo, D., Chervet, N., Steinger, T., van der Heijden, M. G. A., Schlaeppi, K., & Erb, M. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9(1), 2738. https://doi.org/10.1038/s41467-018-05122-7

Huang, Y.W., Ren, W., Grove, J., Poffenbarger, H., Jacobsen, K., Tao, B., Zhu, X.C., McNear, D., 2020. Assessing synergistic effects of no-tillage and cover crops on soil carbon dynamics in a long-term maize cropping system under climate change. Agr. For. Meteorol. 291, 108090.

Iheshiulo, E.M.A., Larney, F.J., Hernandez-Ramirez, G., St. Luce, M., Liu, K., Chau, H.W., 2023. Do diversified crop rotations influence soil physical health? A meta-analysis. Soil Tillage Res. 233, 105781. https://doi.org/10.1016/j.still.2023.105781.

IPCC. 2021. Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., P´ean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B. (Eds.). Cambridge University Press, Cambridge, UK

Izquierdo, J., Milne, A.E., Recasens, J., Royo-Esnal, A., Torra, J., Webster, R., Baraibar, B., 2020. Spatial and temporal stability of weed patches in cereal fields under direct drilling and harrow tillage. Agron 10 (4), e 452. https://doi:10.3390/ agronomy10040452.

Izquierdo, J., Milne, A.E., Recasens, J., Royo-Esnal, A., Torra, J., Webster, R., Baraibar, B., 2020. Spatial and temporal stability of weed patches in cereal fields under direct drilling and harrow tillage. Agron 10 (4), e 452. https://doi:10.3390/ agronomy10040452.

Jha, P., Kumar, V., Godara, R.K., Chauhan, B.S., 2017. Weed management using crop competition in the United States: a review. Crop Protect. 95, 31–37.

Jha, P., Kumar, V., Godara, R.K., Chauhan, B.S., 2017. Weed management using crop competition in the United States: a review. Crop Protect. 95, 31–37.

Jing, H., Liu, Y., & Hou, J. (2025). Impacts of agricultural intensification on biodiversity: Habitat loss, agrochemical use, water depletion, and soil degradation. Journal of Environmental Management, 395, 128036–128036. https://doi.org/10.1016/j.jenvman.2025.128036

Kaur, S., Kaur, R., Chauhan, B.S., 2018. Understanding crop-weed-fertilizer-water interactions and their implications for weed management in agricultural systems. Crop Protect. 103, 65–72.

Knezevic, S.Z., Datta, A., 2015. The CPWC: revisiting data analysis. Weed Sci. 63, 188–202.

Kong, W., Qiu, L., Ishii, S., Jia, X., Su, F., Song, Y., Hao, M., Shao, M., Wei, X., 2023. Contrasting response of soil microbiomes to long-term fertilization in various highland cropping systems. ISME Commun. 3 (1), 81. https://doi.org/10.1038/ s43705-023-00286-w.

Kong, W., Yao, Y., Qiu, L., Shao, M., & Wei, X. (2025). Crop rotation enhances soil microbial network complexity and functionality: a meta-analysis. Applied Soil Ecology, 216(216), 106511. https://doi.org/10.1016/j.apsoil.2025.106511

Kov´ acs-Hostyanszki, ´ A., Bat´ ary, P., B´ aldi, A., 2011. Local and landscape effects on bee communities of Hungarian winter cereal fields. Agric. For. Entomol. 13, 59–66.

Kremen, C., Iles, A., Bacon, C., 2012. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17. https:// doi.org/10.5751/ES-05103-170444.

Krička, T., Matin, A., Bilandžija, N., Jurišić, V., Antonović, A., Voća, N., & Grubor, M. (2017). Biomass valorisation of Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita for biofuel production. International Agrophysics, 31(4), 575–581. https://doi.org/10.1515/intag-2016-0085

Lange, M., Eisenhauer, N., Chen, H., Gleixner, G., 2023. Increased soil carbon storage through plant diversity strengthens with time and extends into the subsoil. Glob. Change Biol. 29, 2627–2639. https://doi.org/10.1111/gcb.16641.

Lange, M., Eisenhauer, N., Sierra, C.A., Bessler, H., Engels, C., Griffiths, R.I., MelladoV´ azquez, P.G., Malik, A.A., Roy, J., Scheu, S., 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707. https://doi.org/ 10.1038/ncomms7707.

Lange, M., Eisenhauer, N., Sierra, C.A., Bessler, H., Engels, C., Griffiths, R.I., MelladoV´ azquez, P.G., Malik, A.A., Roy, J., Scheu, S., 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707. https://doi.org/ 10.1038/ncomms7707.

Li, M., Guo, J., Ren, T., Luo, G., Shen, Q., Lu, J., Guo, S., & Ling, N. (2021). Crop rotation history constrains soil biodiversity and multifunctionality relationships. 319, 107550–107550. https://doi.org/10.1016/j.agee.2021.107550

Lin, B.B., 2011. Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience 61, 183–193. https://doi.org/ 10.1525/bio.2011.61.3.4

Liu, J., Huang, X., Jiang, H., & Chen, H. (2021). Sustaining yield and mitigating methane emissions from rice production with plastic film mulching technique. Agricultural Water Management, 245(106667), 106667. https://doi.org/10.1016/j.agwat.2020.106667

Liu, Q., Zhao, Y., Li, T., Chen, L., Chen, Y., Sui, P., 2023. Changes in soil microbial biomass, diversity, and activity with crop rotation in cropping systems: a global synthesis. Appl. Soil Ecol. 186, 104815. https://doi.org/10.1016/j. Apsoil.2023.10481

Liu, S., Plaza, C., Ochoa-Hueso, R., Trivedi, C., Wang, J., Trivedi, P., Zhou, G., Pineiro, ˜ J., Martins, C.S., Singh, B.K., 2023. Litter and soil biodiversity jointly drive ecosystem functions. Glob. Change Biol. 29, 6276–6285. https://doi.org/10.1111/gcb.16913.

Liu, X., Tan, S., Song, X., Wu, X., Zhao, G., Li, S., Liang, G., 2022. Response of soil organic carbon content to crop rotation and its controls: a global synthesis. Agric. Ecosyst. Environ. 335, 108017. https://doi.org/10.1016/j.agee.2022.108017.

Mah´e, I., Cordeau, S., Bohan, D.A., Derrouch, D., Dessaint, F., Millot, D., Chauvel, B., 2020. Soil seedbank: old methods for new challenges in agroecology? Ann. Appl. Biol. 178, 23–38. https://doi.org/10.1111/aab.12619.

Manson, S., Nekaris, K. A. I., Hedger, K., Balestri, M., Ahmad, N., Adinda, E., Budiadi, B., Imron, M. A., Nijman, V., & Campera, M. (2022). Flower Visitation Time and Number of Visitor Species Are Reduced by the Use of Agrochemicals in Coffee Home Gardens. Agronomy, 12(2), 509. https://doi.org/10.3390/agronomy12020509

Martinez, J. P., Crespo, C., Sainz Rozas, H., Echeverría, H., Studdert, G., Martinez, F., Cordone, G., & Barbieri, P. (2019). Soil organic carbon in cropping sequences with predominance of soya bean in the argentinean humid Pampas. Soil Use and Management, 36(1), 173–183. https://doi.org/10.1111/sum.12547

Matson, P.A., Parton, W.J., Power, A.G., Swift, M.J., 1997. Agricultural intensification and ecosystem properties. Science 277, 504–509.

McDaniel, M.D., Tiemann, L.K., Grandy, A.S., 2014. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570. https://doi.org/10.1890/13-0616.1.

McLaughlin, A., Mineau, P., 1995. The impact of agricultural practices on biodiversity. Agric. Ecosyst. Environ. 55, 201–212.

Mennan, H., Jabran, K., Zandstra, B.H., Pala, F., 2020. Non-chemical weed management in vegetables by using cover crops: a review. Agron 10 (2), 257. https://doi.org/ 10.3390/agronomy10020257.

Mennan, H., Jabran, K., Zandstra, B.H., Pala, F., 2020. Non-chemical weed management in vegetables by using cover crops: a review. Agron 10 (2), 257. https://doi.org/ 10.3390/agronomy10020257

Moonen, A.-C., Barberi, ` P., 2008. Functional biodiversity: An agroecosystem approach. Agric. Ecosyst. Environ. 127, 7–21. https://doi.org/10.1016/j.agee.2008.02.013.

Nannipieri, P., Hannula, S.E., Pietramellara, G., Schloter, M., Sizmur, T., Pathan, S.I., 2023. Legacy effects of rhizodeposits on soil microbiomes: a perspective. Soil Biol. Biochem. 184, 109107. https://doi.org/10.1016/j.soilbio.2023.109107.

Nihat Tursun, Datta, A., Mahmut Sami Sakinmaz, Zekeriya Kantarci, Knezevic, S. Z., & Chauhan, B. S. (2016). The critical period for weed control in three corn (Zea mays L.) types. 90, 59–65. https://doi.org/10.1016/j.cropro.2016.08.019

Niu, Y., Bainard, L.D., May, W.E., Hossain, Z., Hamel, C., Gan, Y., 2018. Intensified pulse rotations buildup pea rhizosphere pathogens in cereal and pulse based cropping systems. Front. Microbiol. 9, 1909. https://doi.org/10.3389/fmicb.2018.01909.

Novelli, L. E., Caviglia, O. P., Jobbágy, E. G., & Sadras, V. O. (2023). Diversified crop sequences to reduce soil nitrogen mining in agroecosystems. Agriculture, Ecosystems & Environment, 341(165), 108208. https://doi.org/10.1016/j.agee.2022.108208

Oerke, E.-C., 2006. Crop losses to pests. J. Agric. Sci. 144, 31–43. https://doi.org/ 10.1017/S00218596050057.

Plaza, E.H., Kozak, M., Navarrete, L., Gonzalez-Andujar, J.L., 2011. Tillage system did not affect weed diversity in a 23-year experiment in Mediterranean dryland. Agric. Ecosyst. Environ. 140, 102–105.

Qian, P., Bai, Y., Zhou, W., Yu, H., Zhu, Z., Wang, G., Quais, M.K., Li, F., Chen, Y., Tan, Y., Shi, X., Wang, X., Zhong, X., Zhu, Z.-R., 2021. Diversified bund vegetation coupled with flowering plants enhances predator population and early-season pest control. Environ. Entomol. 50, 842–851.

Qiu, L., Zhang, Q., Zhu, H., Reich, P. B., Banerjee, S., van der Heijden, M. G. A., Sadowsky, M. J., Ishii, S., Jia, X., Shao, M., Liu, B., Jiao, H., Li, H., & Wei, X. (2021). Erosion reduces soil microbial diversity, network complexity and multifunctionality. The ISME Journal. https://doi.org/10.1038/s41396-021-00913-1

Ray, D.K., Gerber, J.S., MacDonald, G.K., West, P.C., 2015. Climate variation explains a third of global crop yield variability. Nat. Commun. 6 (1), 5989. https://doi.org/ 10.1038/ncomms6989.

Romaniuk, R., Beltrán, M., Brutti, L., Costantini, A., Bacigaluppo, S., Sainz-Rozas, H., & Salvagiotti, F. (2018). Soil organic carbon, macro- and micronutrient changes in soil fractions with different lability in response to crop intensification. Soil and Tillage Research, 181(181), 136–143. https://doi.org/10.1016/j.still.2018.04.014

Salamon, J.-A., Wissuwa, J., Moder, K., Frank, T., 2011. Effects of medicago sativa, taraxacum officinale and bromus sterilis on the density and diversity of collembola in grassy arable fallows of different ages. Pedobiologia 54, 63–70. https://doi.org/ 10.1016/j.pedobi.2010.08.00

Saleem, M. (2022). Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon, 8(2), e08905. https://doi.org/10.1016/j.heliyon.2022.e08905

Sans, F.X., Berner, A., Armengot, L., Mader, ¨ P., 2011. Tillage effects on weed communities in an organic winter wheat–sunflower–spelt cropping sequence. Weed Res. 51, 413–421.

Schumacher, M., Ohnmacht, S., Rosenstein, R., Gerhards, R., 2018. How management factors influence weed communities of cereals, their diversity and endangered weed species in Central Europe. Agriculture 8, 172.

Seufert, V., Ramankutty, N., Foley, J.A., 2012. Comparing the yields of organic and conventional agriculture. Nature 485 (7397), 229–232. https://doi.org/10.1038/ nature11069.

Shrestha, A., Knezevic, S.Z., Roy, R.C., Ball-Coelho, B.R., Swanton, C.J., 2002. Effect of tillage, cover crop and crop rotation on the composition of weed flora in a sandy soil. Weed Res. 42, 76–87.

Shu, X., Zou, Y., Shaw, L.J., Todman, L., Tibbett, M., Sizmur, T., 2022. Applying cover crop residues as diverse mixtures increases initial microbial assimilation of crop residue-derived carbon. Eur. J. Soil Sci. 73, e13232. https://doi.org/10.1111/ ejss.13232.

Soane, B.D., Ball, B.C., Arvidsson, J., Basch, G., Moreno, F., Roger-Estrade, J., 2012. Notill in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil. Res. 118 https://doi. org/10.1016/j.still.2011.10.015.

Spehn, E.M., Joshi, J., Schmid, B., Alphei, J., Korner, ¨ C., 2000. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224, 217–230. https://doi.org/10.1023/A:1004891807664.

Stoate, C., Boatman, N.D., Borralho, R.J., Carvalho, C.R., Snoo, G.R.d., Eden, P., 2001. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 63, 337–365.

Storkey, J., Meyer, S., Still, K.S., Leuschner, C., 2011. The impact of agricultural intensification and land-use change on the European arable flora. Proc. Biol. Sci. 279, 1421–1429.

Strom, N., Hu, W., Haarith, D., Chen, S., & Bushley, K. (2020). Interactions between soil properties, fungal communities, the soybean cyst nematode, and crop yield under continuous corn and soybean monoculture. Applied Soil Ecology, 147, 103388. https://doi.org/10.1016/j.apsoil.2019.103388

Struijk, M., Degani, E., Leigh, S. G., Bowen, E., Thomas, S., Mortimer, S. R., Whitmore, A. P., Ashwood, F., Clark, S. J., & Sizmur, T. (2025). Crop rotation phase has a greater impact on soil biology than crop rotation diversity. Agriculture, Ecosystems & Environment, 396(396), 110023. https://doi.org/10.1016/j.agee.2025.110023

Swanton, C.J., Weise, S.F., 1991. Integrated weed management: the rationale and approach. Weed Technol. 5, 657e663.

Tilman, D., Reich, P.B., Knops, J.M., 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632. https://doi.org/10.1038/ nature04742

Town, J.R., Gregorich, E.G., Drury, C.F., Lemke, R., Phillips, L.A., Helgason, B.L., 2022. Diverse crop rotations influence the bacterial and fungal communities in root, rhizosphere and soil and impact soil microbial processes. Appl. Soil Ecol. 169, 104241. https://doi.org/10.1016/j.apsoil.2021.104241.

Tresch, S., Frey, D., Bayon, R.-C.L., Mader, ¨ P., Stehle, B., Fliessbach, A., Moretti, M., 2019. Direct and indirect effects of urban gardening on aboveground and belowground diversity influencing soil multifunctionality. Sci. Rep. 9, 9769. https:// doi.org/10.1038/s41598-019-46024-y

Veen, G., Fry, E.L., Ten Hooven, F.C., Kardol, P., Morri¨en, E., De Long, J.R., 2019. The role of plant litter in driving plant-soil feedbacks. Front. Environ. Sci. 7, 168. https:// doi.org/10.3389/fenvs.2019.00168.

Venter, Z.S., Jacobs, K., Hawkins, H.J., 2016. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59 (4), 215–223. https://doi.org/ 10.1016/j.pedobi.20

Weisberger, D., Nichols, V., Liebman, M., 2019. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS One 14 (7), e0219847. https://doi.org/10.1371/ journal.pone.0219

Wilson, M. G., Maggi, A. E., Castiglioni, M. G., Gabioud, E. A., & Sasal, M. C. (2020). Conservation of Ecosystem Services in Argiudolls of Argentina. Agriculture, 10(12), 649. https://doi.org/10.3390/agriculture10120649

Wissuwa, J., Salamon, J.-A., Frank, T., 2012. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in eastern Austria. Soil Biol. Biochem. 50, 96–107. https://doi.org/10.1016/j.soilbio.2012.02.025.

Woodcock, B.A., Bullock, J.M., Shore, R.F., Heard, M.S., Pereira, M.G., Redhead, J., Ridding, L., Dean, H., Sleep, D., Henrys, P., Peyton, J., Hulmes, S., Hulmes, L., S´ arospataki, M., Saure, C., Edwards, M., Genersch, E., Knabe, ¨ S., Pywell, R.F., 2017. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395.

Wright, A. L., & Hons, F. M. (2004). Soil Aggregation and Carbon and Nitrogen Storage under Soybean Cropping Sequences. Soil Science Society of America Journal, 68(2), 507–513. https://doi.org/10.2136/sssaj2004.5070

Wu, J., Huang, J., Liu, D., Li, J., Zhang, J., & Wang, H. (2014). Effect of 26 Years of Intensively ManagedCarya cathayensisStands on Soil Organic Carbon and Fertility. The Scientific World JOURNAL, 2014, 1–6. https://doi.org/10.1155/2014/857641

Xue, Y., Tian, J., Quine, T. A., Powlson, D., Xing, K., Yang, L., Yakov Kuzyakov, & Jennifer A.J. Dungait. (2020). The persistence of bacterial diversity and ecosystem multifunctionality along a disturbance intensity gradient in karst soil. Science of the Total Environment, 748, 142381–142381. https://doi.org/10.1016/j.scitotenv.2020.142381

Yang, X., Hu, H., Yang, G., Cui, Z., Chen, Y., 2023. Crop rotational diversity enhances soil microbiome network complexity and multifunctionality. Geoderma 436, 116562. https://doi.org/10.1016/j.geoderma.2023.116562

Yang, X.L., Xiong, J.R., Du, T.S., Ju, X.T., Gan, Y.T., Li, S.E., Xia, L.L., Shen, Y.J., Pacenka, S., Steenhuis, T.S., Siddique, K.H.M., Kang, S.Z., Bahl-Butterbach, K., 2024. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat. Commun. 15 (1), 198. https://doi.org/ 10.1038/s41467-023-44464-9.

Yin, C., Jones, K.L., Peterson, D.E., Garrett, K.A., Hulbert, S.H., Paulitz, T.C., 2010. Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biol. Biochem. 42 (12), 2111–2118. https://doi.org/10.1016/j.soilbio.2010.08.006.

Zektser, S., Lo´ aiciga, H.A., Wolf, J.T., 2005. Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States. Environ. Geol. 47, 396–404.

Zhang, C., Lei, S., Wu, H., Liao, L., Wang, X., Zhang, L., Liu, G., Wang, G., Fang, L., & Song, Z. (2024). Simplified microbial network reduced microbial structure stability and soil functionality in alpine grassland along a natural aridity gradient. Soil Biology and Biochemistry, 191, 109366. https://doi.org/10.1016/j.soilbio.2024.109366

Zhang, K., Maltais-Landry, G., Liao, H.L., 2021. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biol. Biochem. 156, 108219. https://doi. org/10.1016/j.soilbio.2021.108219

Zhao, J., Chen, J., Beillouin, D., Lambers, H., Yang, Y., Smith, P., Zeng, Z., Olesen, J.E., Zang, H., 2022. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nat. Commun. 13 (1), 4926. https://doi. org/10.1038/s41467-022-32464-0.

Zhao, J., Yang, Y., Zhang, K., Jeong, J., Zeng, Z., Zang, H., 2020. Does crop rotation yield more in China? A meta-analysis. Field Crop. Res. 245, 107659. https://doi.org/ 10.1016/j.fcr.2019.10

Zheng, W., Gong, Q., Fenglian Lv, Yin, Y., Li, Z., & Zhai, B. (2020). Tree-scale spatial responses of extracellular enzyme activities and stoichiometry to different types of fertilization and cover crop in an apple orchard. European Journal of Soil Biology, 99, 103207–103207. https://doi.org/10.1016/j.ejsobi.2020.103207

Zimdahl, R.L., 1988. The concept and application of the critical weed-free period. In: Altieri, M.A., Leibman, M. (Eds.), Weed Management in Agroecosystems: ecological Approaches. CRC Press, Boca Raton, FL, USA, pp. 145e155.

Zimdahl, R.L., 1993. Fundamentals of Weed Science. Academic. Press, San Diego, CA, USA.Suhardjono (Editor), Buku pegangan pengelolaan koleksi (hal. 1-19). Bogor: Puslitbang Biologi-LIPI.

Submitted

2025-11-25

Accepted

2025-12-27

Published

2026-01-03

How to Cite

Bela Tri Wijayanti, Ipaulle, Q. H., & Adillah, A. (2026). INTEGRASI ROTASI TANAMAN DAN PERIODE KRITIS PENGENDALIAN GULMA GUNA MENINGKATKAN RESILIENSI EKOLOGIS DAN STABILITAS HASIL : Integrating Crop Rotation and Critical Periods of Weed Control to Enhance Ecological Resilience and Yield Stability: A Review. Gontor Agrotech Science Journal, 11(02), 142–159. https://doi.org/10.21111/agrotech.v11i02.15437

Issue

Section

Kajian Literatur