Combating Soil Drought in Maize (Zea mays L.): Genetic-Engineering Strategies for Drought Tolerant Varieties
DOI:
https://doi.org/10.21111/agrotech.v10i1.12211Keywords:
Maize, Agronomy, Drought Stress, Genome Editing, BreedingAbstract
References
Acosta-Pérez, P., Camacho-Zamora, B. D., Espinoza-Sánchez, E. A., Gutiérrez-Soto, G., Zavala-García, F., Abraham-Juárez, M. J., & Sinagawa-García, S. R. (2020). Characterization of Trehalose-6-phosphate Synthase and Trehalose-6-phosphate Phosphatase Genes and Analysis of its Differential Expression in Maize (Zea mays) Seedlings under Drought Stress. Plants, 9(3), 315. https://doi.org/10.3390/plants9030315
Ali, Y., Nawaz, T., Ahmed, N., Junaid, M., Kanwal, M., Hameed, F., Ahmed, S., Ullah, R., Shahab, M., & Subhan, F. (2022). Maize (Zea mays) Response to Abiotic Stress. In Maize Genetic Resources - Breeding Strategies and Recent Advances. InTechOpen. www.intechopen.com
Arefin, P., Ahmed, S., Habib, M. S., Sadiq, Z. A., Boby, F., Dey, S. S., Md Abdurrahim, M. A., Ashraf, T., Arefin, A., Islam, S., Arefin, M. S., Miah, Md. A. S., & Md Ibrahim, M. I. (2022). Assessment and Comparison of Nutritional Properties of Jackfruit Seed Powder with Rice, Wheat, Barley, and Maize Flour. Current Research in Nutrition and Food Science Journal, 10(2), 544–552. https://doi.org/10.12944/CRNFSJ.10.2.11
Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Drought Stress in Maize (Zea mays L.). Springer International Publishing. https://doi.org/10.1007/978-3-319-25442-5
Avramova, V., Abdelgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., Knapen, D., Taleisnik, E., Guisez, Y., Asard, H., & Beemster, G. T. S. (2015). Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiology, 169(2), 1382–1396. https://doi.org/10.1104/pp.15.00276
Ben Romdhane, W., Ben-Saad, R., Meynard, D., Verdeil, J.-L., Azaza, J., Zouari, N., Fki, L., Guiderdoni, E., Al-Doss, A., & Hassairi, A. (2017). Ectopic Expression of Aeluropus littoralis Plasma Membrane Protein Gene AlTMP1 Confers Abiotic Stress Tolerance in Transgenic Tobacco by Improving Water Status and Cation Homeostasis. International Journal of Molecular Sciences, 18(4), 692. https://doi.org/10.3390/ijms18040692
Cardi, T., Murovec, J., Bakhsh, A., Boniecka, J., Bruegmann, T., Bull, S. E., Eeckhaut, T., Fladung, M., Galovic, V., Linkiewicz, A., Lukan, T., Mafra, I., Michalski, K., Kavas, M., Nicolia, A., Nowakowska, J., Sági, L., Sarmiento, C., Yıldırım, K., … Van Laere, K. (2023). CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. In Trends in Plant Science (Vol. 28, Issue 10, pp. 1144–1165). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2023.05.012
Chávez-Arias, C. C., Ligarreto-Moreno, G. A., Ramírez-Godoy, A., & Restrepo-Díaz, H. (2021). Maize Responses Challenged by Drought, Elevated Daytime Temperature and Arthropod Herbivory Stresses: A Physiological, Biochemical and Molecular View. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.702841
Chen, K., Li, G., Bressan, R. A., Song, C., Zhu, J., &
Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62(1), 25–54. https://doi.org/10.1111/jipb.12899
Dalakouras, A., & Vlachostergios, D. (2021). Epigenetic approaches to crop breeding: current status and perspectives. Journal of Experimental Botany, 72(15), 5356–5371. https://doi.org/10.1093/jxb/erab227
Doll, N. M., Gilles, L. M., Gérentes, M.-F., Richard, C., Just, J., Fierlej, Y., Borrelli, V. M. G., Gendrot, G., Ingram, G. C., Rogowsky, P. M., & Widiez, T. (2019). Single and multiple gene knockouts by CRISPR–Cas9 in maize. Plant Cell Reports, 38(4), 487–501. https://doi.org/10.1007/s00299-019-02378-1
Dong, Z., Alexander, M., & Chuck, G. (2019). Understanding Grass Domestication through Maize Mutants. Trends in Genetics, 35(2), 118–128. https://doi.org/10.1016/j.tig.2018.10.007
Du, H., Chang, Y., Huang, F., & Xiong, L. (2015). GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice. Journal of Integrative Plant Biology, 57(11), 954–968. https://doi.org/10.1111/jipb.12313
Feng, X., Xiong, J., Zhang, W., Guan, H., Zheng, D., Xiong, H., Jia, L., Hu, Y., Zhou, H., Wen, Y., Zhang, X., Wu, F., Wang, Q., Xu, J., & Lu, Y. (2022). ZmLBD5, a class‐II LBD gene, negatively regulates drought tolerance by impairing abscisic acid synthesis. The Plant Journal, 112(6), 1364–1376. https://doi.org/10.1111/tpj.16015
Gazal, A., Dar, Z. A., & Lone, A. A. (2018). Molecular Breeding for Abiotic Stresses in Maize (Zea mays L.). In Maize Germplasm - Characterization and Genetic Approaches for Crop Improvement. InTech. https://doi.org/10.5772/intechopen.71081
Gillani, S. F. A., Rasheed, A., Majeed, Y., Tariq, H., & Yunling, P. (2021). Recent advancements on the use of CRISPR /Cas9 in maize yield and quality improvement. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 1–30. https://doi.org/10.15835/nbha49312459
Guo, Y., Shi, Y., Wang, Y., Liu, F., Li, Z., Qi, J., Wang, Y., Zhang, J., Yang, S., Wang, Y., & Gong, Z. (2023a). The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. New Phytologist, 237(5), 1728–1744. https://doi.org/10.1111/nph.18647
Guo, Y., Shi, Y., Wang, Y., Liu, F., Li, Z., Qi, J., Wang, Y., Zhang, J., Yang, S., Wang, Y., & Gong, Z. (2023b). The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. New Phytologist, 237(5), 1728–1744. https://doi.org/10.1111/nph.18647
Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/science.aaz7614
Hrmova, M., & Hussain, S. S. (2021). Plant Transcription Factors Involved in Drought and Associated Stresses. International Journal of Molecular Sciences, 22(11), 5662. https://doi.org/10.3390/ijms22115662
Jiang, Y., Sun, K., & An, X. (2022). CRISPR/Cas System: Applications and Prospects for Maize Improvement. In ACS Agricultural Science and Technology (Vol. 2, Issue 2, pp. 174–183). American Chemical Society. https://doi.org/10.1021/acsagscitech.1c00253
Kang, J., Peng, Y., & Xu, W. (2022). Crop Root Responses to Drought Stress: Molecular Mechanisms, Nutrient Regulations, and Interactions with Microorganisms in the Rhizosphere. International Journal of Molecular Sciences, 23(16), 9310. https://doi.org/10.3390/ijms23169310
Kausch, A. P., Wang, K., Kaeppler, H. F., & Gordon-Kamm, W. (2021). Maize transformation: history, progress, and perspectives. Molecular Breeding, 41(6), 38. https://doi.org/10.1007/s11032-021-01225-0
Kerbler, S. M., Armijos‐Jaramillo, V., Lunn, J. E., & Vicente, R. (2023). The trehalose 6‐phosphate phosphatase family in plants. Physiologia Plantarum, 175(6). https://doi.org/10.1111/ppl.14096
Kim, H.-S., Shin, J.-H., Lee, H.-S., Kim, S., Jang, H.-Y., Kim, E., & Ahn, S.-J. (2022). CsRCI2D enhances high-temperature stress tolerance in Camelina sativa L. through endo-membrane trafficking from the plasma membrane. Plant Science, 320, 111294. https://doi.org/10.1016/j.plantsci.2022.111294
Kim, K.-H., & Lee, B.-M. (2023). Effects of Climate Change and Drought Tolerance on Maize Growth. Plants, 12(20), 3548. https://doi.org/10.3390/plants12203548
Lei, L., Pan, H., Hu, H.-Y., Fan, X.-W., Wu, Z.-B., & Li, Y.-Z. (2023). Characterization of ZmPMP3g function in drought tolerance of maize. Scientific Reports, 13(1), 7375. https://doi.org/10.1038/s41598-023-32989-4
Leng, P., & Zhao, J. (2020). Transcription factors as molecular switches to regulate drought adaptation in maize. Theoretical and Applied Genetics, 133(5), 1455–1465. https://doi.org/10.1007/s00122-019-03494-y
Li, H., Tiwari, M., Tang, Y., Wang, L., Yang, S., Long, H., Guo, J., Wang, Y., Wang, H., Yang, Q., Jagadish, S. V. K., & Shao, R. (2022). Metabolomic and transcriptomic analyses reveal that sucrose synthase regulates maize pollen viability under heat and drought stress. Ecotoxicology and Environmental Safety, 246, 114191. https://doi.org/10.1016/j.ecoenv.2022.114191
Liang, Y., Jiang, Y., Du, M., Li, B., Chen, L., Chen, M., Jin, D., & Wu, J. (2019). ZmASR3 from the Maize ASR Gene Family Positively Regulates Drought Tolerance in Transgenic Arabidopsis. International Journal of Molecular Sciences, 20(9), 2278. https://doi.org/10.3390/ijms20092278
Liu, H., Wu, Z., Bao, M., Gao, F., Yang, W., Abou‐Elwafa, S. F., Liu, Z., Ren, Z., Zhu, Y., Ku, L., Su, H., Chong, L., & Chen, Y. (2024). ZmC2H2‐149 negatively regulates drought tolerance by repressing ZmHSD1 in maize. Plant, Cell & Environment. https://doi.org/10.1111/pce.14798
Liu, S., Li, C., Wang, H., Wang, S., Yang, S., Liu, X., Yan, J., Li, B., Beatty, M., Zastrow-Hayes, G., Song, S., & Qin, F. (2020). Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biology, 21(1). https://doi.org/10.1186/s13059-020-02069-1
Liu, S., Liu, X., Zhang, X., Chang, S., Ma, C., & Qin, F. (2022). Co-Expression of ZmVPP1 with ZmNAC111 Confers Robust Drought Resistance in Maize. Genes, 14(1), 8. https://doi.org/10.3390/genes14010008
Liu, S., & Qin, F. (2021). Genetic dissection of maize drought tolerance for trait improvement. In Molecular Breeding (Vol. 41, Issue 2). Springer Science and Business Media B.V. https://doi.org/10.1007/s11032-020-01194-w
McMillen, M. S., Mahama, A. A., Sibiya, J., Lübberstedt, T., & Suza, W. P. (2022). Improving drought tolerance in maize: Tools and techniques. In Frontiers in Genetics (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fgene.2022.1001001
Muha-Ud-Din, G., Ali, F., Hameed, A., Naqvi, S. A. H., Nizamani, M. M., Jabran, M., Sarfraz, S., & Yong, W. (2024). CRISPR/Cas9-based genome editing: A revolutionary approach for crop improvement and global food security. In Physiological and Molecular Plant Pathology (Vol. 129). Academic Press. https://doi.org/10.1016/j.pmpp.2023.102191
Muntean, L., Ona, A., Berindean, I., Racz, I., & Muntean, S. (2022). Maize Breeding: From Domestication to Genomic Tools. Agronomy, 12(10), 2365. https://doi.org/10.3390/agronomy12102365
Muppala, S., Gudlavalleti, P. K., Malireddy, K. R., Puligundla, S. K., & Dasari, P. (2021). Development of stable transgenic maize plants tolerant for drought by manipulating ABA signaling through Agrobacterium-mediated transformation. Journal of Genetic Engineering and Biotechnology, 19(1), 96. https://doi.org/10.1186/s43141-021-00195-2
Nuccio, M. L., Wu, J., Mowers, R., Zhou, H.-P., Meghji, M., Primavesi, L. F., Paul, M. J., Chen, X., Gao, Y., Haque, E., Basu, S. S., & Lagrimini, L. M. (2015). Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology, 33(8), 862–869. https://doi.org/10.1038/nbt.3277
Pan, Z., Liu, M., Zhao, H., Tan, Z., Liang, K., Sun, Q., Gong, D., He, H., Zhou, W., & Qiu, F. (2020). ZmSRL5 is involved in drought tolerance by maintaining cuticular wax structure in maize. Journal of Integrative Plant Biology, 62(12), 1895–1909. https://doi.org/10.1111/jipb.12982
Pedrosa, A. M., Cidade, L. C., Martins, C. P. S., Macedo, A. F., Neves, D. M., Gomes, F. P., Floh, E. I. S., & Costa, M. G. C. (2017). Effect of overexpression of citrus 9-cis-epoxycarotenoid dioxygenase 3 (CsNCED3) on the physiological response to drought stress in transgenic tobacco. Genetics and Molecular Research, 16(1). https://doi.org/10.4238/gmr16019292
Qi, H., Liang, K., Ke, Y., Wang, J., Yang, P., Yu, F., & Qiu, F. (2023). Advances of Apetala2/Ethylene Response Factors in Regulating Development and Stress Response in Maize. International Journal of Molecular Sciences, 24(6), 5416. https://doi.org/10.3390/ijms24065416
Radić, V., Balalić, I., Cvejić, S., Jocić, S., Marjanović-Jeromela, A., & Miladinović, D. (2018). Drought effect on maize seedling development. Ratarstvo i Povrtarstvo, 55(3), 135–138. https://doi.org/10.5937/RatPov1803135R
Sauer, N. J., Mozoruk, J., Miller, R. B., Warburg, Z. J., Walker, K. A., Beetham, P. R., Schöpke, C. R., & Gocal, G. F. W. (2016). Oligonucleotide‐directed mutagenesis for precision gene editing. Plant Biotechnology Journal, 14(2), 496–502. https://doi.org/10.1111/pbi.12496
Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., & Habben, J. E. (2017a). ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207–216. https://doi.org/10.1111/pbi.12603
Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., & Habben, J. E. (2017b). ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207–216. https://doi.org/10.1111/pbi.12603
Shi, J., Habben, J. E., Archibald, R. L., Drummond, B. J., Chamberlin, M. A., Williams, R. W., Renee Lafitte, H., & Weers, B. P. (2015). Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both arabidopsis and maize. Plant Physiology, 169(1), 266–282. https://doi.org/10.1104/pp.15.00780
Stein, O., & Granot, D. (2019). An Overview of Sucrose Synthases in Plants. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00095
Sultana, S., Turečková, V., Ho, C.-L., Napis, S., & Namasivayam, P. (2014). Molecular cloning of a putative Acanthus ebracteatus- 9-cis-epoxycarotenoid deoxygenase (AeNCED) and its overexpression in rice. Journal of Crop Science and Biotechnology, 17(4), 239–246. https://doi.org/10.1007/s12892-014-0006-4
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant Physiology and Development 6th (6th ed.). Sinauer Associates, Inc., now Oxford University Press.
Takahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2020). Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. In Frontiers in Plant Science (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.556972
Trono, D. (2019). Carotenoids in Cereal Food Crops: Composition and Retention throughout Grain Storage and Food Processing. Plants, 8(12), 551. https://doi.org/10.3390/plants8120551
Villao-Uzho, L., Chávez-Navarrete, T., Pacheco-Coello, R., Sánchez-Timm, E., & Santos-Ordóñez, E. (2023). Plant Promoters: Their Identification, Characterization, and Role in Gene Regulation. Genes, 14(6), 1226. https://doi.org/10.3390/genes14061226
Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C. C., & Marc, R. A. (2022). Plants’ Physio-
Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. In Plants (Vol. 11, Issue 13). MDPI. https://doi.org/10.3390/plants11131620
Wang, X., Wang, H., Liu, S., Ferjani, A., Li, J., Yan, J., Yang, X., & Qin, F. (2016). Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 48(10), 1233–1241. https://doi.org/10.1038/ng.3636
Wang, Y., Tang, Q., Pu, L., Zhang, H., & Li, X. (2022). CRISPR-Cas technology opens a new era for the creation of novel maize germplasms. In Frontiers in Plant Science (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fpls.2022.1049803
Xiao, N., Ma, H., Wang, W., Sun, Z., Li, P., & Xia, T. (2024). Overexpression of ZmSUS1 increased drought resistance of maize (Zea mays L.) by regulating sucrose metabolism and soluble sugar content. Planta, 259(2), 43. https://doi.org/10.1007/s00425-024-04336-y
Yan, S., Weng, B., Jing, L., & Bi, W. (2023). Effects of drought stress on water content and biomass distribution in summer maize(Zea mays L.). Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1118131
Yang, Y., Li, A., Liu, Y., Shu, J., Wang, J., Guo, Y., Li, Q., Wang, J., Zhou, A., Wu, C., & Wu, J. (2024). ZmASR1 negatively regulates drought stress tolerance in maize. Plant Physiology and Biochemistry, 211, 108684. https://doi.org/10.1016/j.plaphy.2024.108684
Yu, H., Liu, B., Yang, Q., Yang, Q., Li, W., & Fu, F. (2024). Maize ZmLAZ1-3 gene negatively regulates drought tolerance in transgenic Arabidopsis. BMC Plant Biology, 24(1), 246. https://doi.org/10.1186/s12870-024-04923-x
Zhang, D., Zhang, Z., Li, C., Xing, Y., Luo, Y., Wang, X., Li, D., Ma, Z., & Cai, H. (2022). Overexpression of MsRCI2D and MsRCI2E Enhances Salt Tolerance in Alfalfa (Medicago sativa L.) by Stabilizing Antioxidant Activity and Regulating Ion Homeostasis. International Journal of Molecular Sciences, 23(17), 9810. https://doi.org/10.3390/ijms23179810
Zhang, X., Mi, Y., Mao, H., Liu, S., Chen, L., & Qin, F. (2020). Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnology Journal, 18(5), 1271–1283. https://doi.org/10.1111/pbi.13290
Zhu, D., Chang, Y., Pei, T., Zhang, X., Liu, L., Li, Y., Zhuang, J., Yang, H., Qin, F., Song, C., & Ren, D. (2020). MAPK‐like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. The Plant Journal, 102(4), 747–760. https://doi.org/10.1111/tpj.14660
Zhu, Y., Liu, Y., Zhou, K., Tian, C., Aslam, M., Zhang, B., Liu, W., & Zou, H. (2022). Overexpression of ZmEREBP60 enhances drought tolerance in maize. Journal of Plant Physiology, 275, 153763. https://doi.org/10.1016/j.jplph.2022.153763
Downloads
Published
How to Cite
Issue
Section
License
The author whose published manuscript approved the following provisions:
1. The right of publication of all material published in the journal / published in the Gontor AGROTECH Science Journal is held by the editorial board with the knowledge of the author (moral rights remain the author of the script).
2. The formal legal provisions for access to digital articles of this electronic journal are subject to the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0), which means that Gontor AGROTECH Science Journal reserves the right to save, transmit media or format, Database), maintain, and publish articles without requesting permission from the Author as long as it keeps the Author's name as the owner of Copyright.
3. Printed and electronic published manuscripts are open access for educational, research and library purposes. In addition to these objectives, the editorial board shall not be liable for violations of copyright law.