Combating Soil Drought in Maize (Zea mays L.): Genetic-Engineering Strategies for Drought Tolerant Varieties

Authors

  • Moch. Rosyadi Adnan Politeknik Negeri Jember
  • Ahmad Robiul Syawaluddin Politeknik Negeri Jember
  • Alvianti Maulidatus Sholehah Politeknik Negeri Jember
  • Dinik Dwi Cahyani Politeknik Negeri Jember
  • Fitriyatul Lailiyah Politeknik Negeri Jember
  • Gilang Hardi Sucahyo Politeknik Negeri Jember
  • Hendri Kurniawan Politeknik Negeri Jember
  • Nurul Aini Politeknik Negeri Jember
  • Elly Daru Wilujeng Politeknik Negeri Jember

DOI:

https://doi.org/10.21111/agrotech.v10i1.12211

Keywords:

Maize, Agronomy, Drought Stress, Genome Editing, Breeding

Abstract

Drought is the global challenge of crop agriculture across the globe. The detrimental effect of drought hinders a significant growth and development impairment leading to devastating harvest losses. Maize, a vital staple for food faces future challenges with a rapidly expanding drought area. To address this challenge, scientists and breeders are urged to develop new varieties that are not only resistant or tolerant but also even potentially thrive under drought planting conditions. New breeding technologies involving molecular biology and biotechnology have been developed and implemented thus offering a promising solution. Genetic engineering has allowed humans to straightforwardly transfer beneficial genes across species and varieties, thus deliberating gene pool transfer of similar species and varieties. Furthermore, this technology has evolved to the level of creation, deletion, or modification of existing alleles with high precision through CRISPR/Cas9-mediated genome editing. This review article delves into the morpho-physiology, biochemical, and molecular responses of maize varieties against drought stress. It subsequently explores how genetic engineering has been utilized to optimize the selected genes underlying those responses. By exploring the current progress of genetic engineering, this article aims to prepare the ground for future advancement in combating drought through drought-tolerant maize varieties. Thus, this review article has the potential to contribute to improving food security in the increasing drought challenges.

References

Acosta-Pérez, P., Camacho-Zamora, B. D., Espinoza-Sánchez, E. A., Gutiérrez-Soto, G., Zavala-García, F., Abraham-Juárez, M. J., & Sinagawa-García, S. R. (2020). Characterization of Trehalose-6-phosphate Synthase and Trehalose-6-phosphate Phosphatase Genes and Analysis of its Differential Expression in Maize (Zea mays) Seedlings under Drought Stress. Plants, 9(3), 315. https://doi.org/10.3390/plants9030315

Ali, Y., Nawaz, T., Ahmed, N., Junaid, M., Kanwal, M., Hameed, F., Ahmed, S., Ullah, R., Shahab, M., & Subhan, F. (2022). Maize (Zea mays) Response to Abiotic Stress. In Maize Genetic Resources - Breeding Strategies and Recent Advances. InTechOpen. www.intechopen.com

Arefin, P., Ahmed, S., Habib, M. S., Sadiq, Z. A., Boby, F., Dey, S. S., Md Abdurrahim, M. A., Ashraf, T., Arefin, A., Islam, S., Arefin, M. S., Miah, Md. A. S., & Md Ibrahim, M. I. (2022). Assessment and Comparison of Nutritional Properties of Jackfruit Seed Powder with Rice, Wheat, Barley, and Maize Flour. Current Research in Nutrition and Food Science Journal, 10(2), 544–552. https://doi.org/10.12944/CRNFSJ.10.2.11

Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Drought Stress in Maize (Zea mays L.). Springer International Publishing. https://doi.org/10.1007/978-3-319-25442-5

Avramova, V., Abdelgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., Knapen, D., Taleisnik, E., Guisez, Y., Asard, H., & Beemster, G. T. S. (2015). Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiology, 169(2), 1382–1396. https://doi.org/10.1104/pp.15.00276

Ben Romdhane, W., Ben-Saad, R., Meynard, D., Verdeil, J.-L., Azaza, J., Zouari, N., Fki, L., Guiderdoni, E., Al-Doss, A., & Hassairi, A. (2017). Ectopic Expression of Aeluropus littoralis Plasma Membrane Protein Gene AlTMP1 Confers Abiotic Stress Tolerance in Transgenic Tobacco by Improving Water Status and Cation Homeostasis. International Journal of Molecular Sciences, 18(4), 692. https://doi.org/10.3390/ijms18040692

Cardi, T., Murovec, J., Bakhsh, A., Boniecka, J., Bruegmann, T., Bull, S. E., Eeckhaut, T., Fladung, M., Galovic, V., Linkiewicz, A., Lukan, T., Mafra, I., Michalski, K., Kavas, M., Nicolia, A., Nowakowska, J., Sági, L., Sarmiento, C., Yıldırım, K., … Van Laere, K. (2023). CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. In Trends in Plant Science (Vol. 28, Issue 10, pp. 1144–1165). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2023.05.012

Chávez-Arias, C. C., Ligarreto-Moreno, G. A., Ramírez-Godoy, A., & Restrepo-Díaz, H. (2021). Maize Responses Challenged by Drought, Elevated Daytime Temperature and Arthropod Herbivory Stresses: A Physiological, Biochemical and Molecular View. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.702841

Chen, K., Li, G., Bressan, R. A., Song, C., Zhu, J., &

Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62(1), 25–54. https://doi.org/10.1111/jipb.12899

Dalakouras, A., & Vlachostergios, D. (2021). Epigenetic approaches to crop breeding: current status and perspectives. Journal of Experimental Botany, 72(15), 5356–5371. https://doi.org/10.1093/jxb/erab227

Doll, N. M., Gilles, L. M., Gérentes, M.-F., Richard, C., Just, J., Fierlej, Y., Borrelli, V. M. G., Gendrot, G., Ingram, G. C., Rogowsky, P. M., & Widiez, T. (2019). Single and multiple gene knockouts by CRISPR–Cas9 in maize. Plant Cell Reports, 38(4), 487–501. https://doi.org/10.1007/s00299-019-02378-1

Dong, Z., Alexander, M., & Chuck, G. (2019). Understanding Grass Domestication through Maize Mutants. Trends in Genetics, 35(2), 118–128. https://doi.org/10.1016/j.tig.2018.10.007

Du, H., Chang, Y., Huang, F., & Xiong, L. (2015). GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice. Journal of Integrative Plant Biology, 57(11), 954–968. https://doi.org/10.1111/jipb.12313

Feng, X., Xiong, J., Zhang, W., Guan, H., Zheng, D., Xiong, H., Jia, L., Hu, Y., Zhou, H., Wen, Y., Zhang, X., Wu, F., Wang, Q., Xu, J., & Lu, Y. (2022). ZmLBD5, a class‐II LBD gene, negatively regulates drought tolerance by impairing abscisic acid synthesis. The Plant Journal, 112(6), 1364–1376. https://doi.org/10.1111/tpj.16015

Gazal, A., Dar, Z. A., & Lone, A. A. (2018). Molecular Breeding for Abiotic Stresses in Maize (Zea mays L.). In Maize Germplasm - Characterization and Genetic Approaches for Crop Improvement. InTech. https://doi.org/10.5772/intechopen.71081

Gillani, S. F. A., Rasheed, A., Majeed, Y., Tariq, H., & Yunling, P. (2021). Recent advancements on the use of CRISPR /Cas9 in maize yield and quality improvement. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 1–30. https://doi.org/10.15835/nbha49312459

Guo, Y., Shi, Y., Wang, Y., Liu, F., Li, Z., Qi, J., Wang, Y., Zhang, J., Yang, S., Wang, Y., & Gong, Z. (2023a). The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. New Phytologist, 237(5), 1728–1744. https://doi.org/10.1111/nph.18647

Guo, Y., Shi, Y., Wang, Y., Liu, F., Li, Z., Qi, J., Wang, Y., Zhang, J., Yang, S., Wang, Y., & Gong, Z. (2023b). The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. New Phytologist, 237(5), 1728–1744. https://doi.org/10.1111/nph.18647

Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/science.aaz7614

Hrmova, M., & Hussain, S. S. (2021). Plant Transcription Factors Involved in Drought and Associated Stresses. International Journal of Molecular Sciences, 22(11), 5662. https://doi.org/10.3390/ijms22115662

Jiang, Y., Sun, K., & An, X. (2022). CRISPR/Cas System: Applications and Prospects for Maize Improvement. In ACS Agricultural Science and Technology (Vol. 2, Issue 2, pp. 174–183). American Chemical Society. https://doi.org/10.1021/acsagscitech.1c00253

Kang, J., Peng, Y., & Xu, W. (2022). Crop Root Responses to Drought Stress: Molecular Mechanisms, Nutrient Regulations, and Interactions with Microorganisms in the Rhizosphere. International Journal of Molecular Sciences, 23(16), 9310. https://doi.org/10.3390/ijms23169310

Kausch, A. P., Wang, K., Kaeppler, H. F., & Gordon-Kamm, W. (2021). Maize transformation: history, progress, and perspectives. Molecular Breeding, 41(6), 38. https://doi.org/10.1007/s11032-021-01225-0

Kerbler, S. M., Armijos‐Jaramillo, V., Lunn, J. E., & Vicente, R. (2023). The trehalose 6‐phosphate phosphatase family in plants. Physiologia Plantarum, 175(6). https://doi.org/10.1111/ppl.14096

Kim, H.-S., Shin, J.-H., Lee, H.-S., Kim, S., Jang, H.-Y., Kim, E., & Ahn, S.-J. (2022). CsRCI2D enhances high-temperature stress tolerance in Camelina sativa L. through endo-membrane trafficking from the plasma membrane. Plant Science, 320, 111294. https://doi.org/10.1016/j.plantsci.2022.111294

Kim, K.-H., & Lee, B.-M. (2023). Effects of Climate Change and Drought Tolerance on Maize Growth. Plants, 12(20), 3548. https://doi.org/10.3390/plants12203548

Lei, L., Pan, H., Hu, H.-Y., Fan, X.-W., Wu, Z.-B., & Li, Y.-Z. (2023). Characterization of ZmPMP3g function in drought tolerance of maize. Scientific Reports, 13(1), 7375. https://doi.org/10.1038/s41598-023-32989-4

Leng, P., & Zhao, J. (2020). Transcription factors as molecular switches to regulate drought adaptation in maize. Theoretical and Applied Genetics, 133(5), 1455–1465. https://doi.org/10.1007/s00122-019-03494-y

Li, H., Tiwari, M., Tang, Y., Wang, L., Yang, S., Long, H., Guo, J., Wang, Y., Wang, H., Yang, Q., Jagadish, S. V. K., & Shao, R. (2022). Metabolomic and transcriptomic analyses reveal that sucrose synthase regulates maize pollen viability under heat and drought stress. Ecotoxicology and Environmental Safety, 246, 114191. https://doi.org/10.1016/j.ecoenv.2022.114191

Liang, Y., Jiang, Y., Du, M., Li, B., Chen, L., Chen, M., Jin, D., & Wu, J. (2019). ZmASR3 from the Maize ASR Gene Family Positively Regulates Drought Tolerance in Transgenic Arabidopsis. International Journal of Molecular Sciences, 20(9), 2278. https://doi.org/10.3390/ijms20092278

Liu, H., Wu, Z., Bao, M., Gao, F., Yang, W., Abou‐Elwafa, S. F., Liu, Z., Ren, Z., Zhu, Y., Ku, L., Su, H., Chong, L., & Chen, Y. (2024). ZmC2H2‐149 negatively regulates drought tolerance by repressing ZmHSD1 in maize. Plant, Cell & Environment. https://doi.org/10.1111/pce.14798

Liu, S., Li, C., Wang, H., Wang, S., Yang, S., Liu, X., Yan, J., Li, B., Beatty, M., Zastrow-Hayes, G., Song, S., & Qin, F. (2020). Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biology, 21(1). https://doi.org/10.1186/s13059-020-02069-1

Liu, S., Liu, X., Zhang, X., Chang, S., Ma, C., & Qin, F. (2022). Co-Expression of ZmVPP1 with ZmNAC111 Confers Robust Drought Resistance in Maize. Genes, 14(1), 8. https://doi.org/10.3390/genes14010008

Liu, S., & Qin, F. (2021). Genetic dissection of maize drought tolerance for trait improvement. In Molecular Breeding (Vol. 41, Issue 2). Springer Science and Business Media B.V. https://doi.org/10.1007/s11032-020-01194-w

McMillen, M. S., Mahama, A. A., Sibiya, J., Lübberstedt, T., & Suza, W. P. (2022). Improving drought tolerance in maize: Tools and techniques. In Frontiers in Genetics (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fgene.2022.1001001

Muha-Ud-Din, G., Ali, F., Hameed, A., Naqvi, S. A. H., Nizamani, M. M., Jabran, M., Sarfraz, S., & Yong, W. (2024). CRISPR/Cas9-based genome editing: A revolutionary approach for crop improvement and global food security. In Physiological and Molecular Plant Pathology (Vol. 129). Academic Press. https://doi.org/10.1016/j.pmpp.2023.102191

Muntean, L., Ona, A., Berindean, I., Racz, I., & Muntean, S. (2022). Maize Breeding: From Domestication to Genomic Tools. Agronomy, 12(10), 2365. https://doi.org/10.3390/agronomy12102365

Muppala, S., Gudlavalleti, P. K., Malireddy, K. R., Puligundla, S. K., & Dasari, P. (2021). Development of stable transgenic maize plants tolerant for drought by manipulating ABA signaling through Agrobacterium-mediated transformation. Journal of Genetic Engineering and Biotechnology, 19(1), 96. https://doi.org/10.1186/s43141-021-00195-2

Nuccio, M. L., Wu, J., Mowers, R., Zhou, H.-P., Meghji, M., Primavesi, L. F., Paul, M. J., Chen, X., Gao, Y., Haque, E., Basu, S. S., & Lagrimini, L. M. (2015). Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology, 33(8), 862–869. https://doi.org/10.1038/nbt.3277

Pan, Z., Liu, M., Zhao, H., Tan, Z., Liang, K., Sun, Q., Gong, D., He, H., Zhou, W., & Qiu, F. (2020). ZmSRL5 is involved in drought tolerance by maintaining cuticular wax structure in maize. Journal of Integrative Plant Biology, 62(12), 1895–1909. https://doi.org/10.1111/jipb.12982

Pedrosa, A. M., Cidade, L. C., Martins, C. P. S., Macedo, A. F., Neves, D. M., Gomes, F. P., Floh, E. I. S., & Costa, M. G. C. (2017). Effect of overexpression of citrus 9-cis-epoxycarotenoid dioxygenase 3 (CsNCED3) on the physiological response to drought stress in transgenic tobacco. Genetics and Molecular Research, 16(1). https://doi.org/10.4238/gmr16019292

Qi, H., Liang, K., Ke, Y., Wang, J., Yang, P., Yu, F., & Qiu, F. (2023). Advances of Apetala2/Ethylene Response Factors in Regulating Development and Stress Response in Maize. International Journal of Molecular Sciences, 24(6), 5416. https://doi.org/10.3390/ijms24065416

Radić, V., Balalić, I., Cvejić, S., Jocić, S., Marjanović-Jeromela, A., & Miladinović, D. (2018). Drought effect on maize seedling development. Ratarstvo i Povrtarstvo, 55(3), 135–138. https://doi.org/10.5937/RatPov1803135R

Sauer, N. J., Mozoruk, J., Miller, R. B., Warburg, Z. J., Walker, K. A., Beetham, P. R., Schöpke, C. R., & Gocal, G. F. W. (2016). Oligonucleotide‐directed mutagenesis for precision gene editing. Plant Biotechnology Journal, 14(2), 496–502. https://doi.org/10.1111/pbi.12496

Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., & Habben, J. E. (2017a). ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207–216. https://doi.org/10.1111/pbi.12603

Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., & Habben, J. E. (2017b). ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207–216. https://doi.org/10.1111/pbi.12603

Shi, J., Habben, J. E., Archibald, R. L., Drummond, B. J., Chamberlin, M. A., Williams, R. W., Renee Lafitte, H., & Weers, B. P. (2015). Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both arabidopsis and maize. Plant Physiology, 169(1), 266–282. https://doi.org/10.1104/pp.15.00780

Stein, O., & Granot, D. (2019). An Overview of Sucrose Synthases in Plants. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00095

Sultana, S., Turečková, V., Ho, C.-L., Napis, S., & Namasivayam, P. (2014). Molecular cloning of a putative Acanthus ebracteatus- 9-cis-epoxycarotenoid deoxygenase (AeNCED) and its overexpression in rice. Journal of Crop Science and Biotechnology, 17(4), 239–246. https://doi.org/10.1007/s12892-014-0006-4

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant Physiology and Development 6th (6th ed.). Sinauer Associates, Inc., now Oxford University Press.

Takahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2020). Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. In Frontiers in Plant Science (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.556972

Trono, D. (2019). Carotenoids in Cereal Food Crops: Composition and Retention throughout Grain Storage and Food Processing. Plants, 8(12), 551. https://doi.org/10.3390/plants8120551

Villao-Uzho, L., Chávez-Navarrete, T., Pacheco-Coello, R., Sánchez-Timm, E., & Santos-Ordóñez, E. (2023). Plant Promoters: Their Identification, Characterization, and Role in Gene Regulation. Genes, 14(6), 1226. https://doi.org/10.3390/genes14061226

Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C. C., & Marc, R. A. (2022). Plants’ Physio-

Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. In Plants (Vol. 11, Issue 13). MDPI. https://doi.org/10.3390/plants11131620

Wang, X., Wang, H., Liu, S., Ferjani, A., Li, J., Yan, J., Yang, X., & Qin, F. (2016). Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 48(10), 1233–1241. https://doi.org/10.1038/ng.3636

Wang, Y., Tang, Q., Pu, L., Zhang, H., & Li, X. (2022). CRISPR-Cas technology opens a new era for the creation of novel maize germplasms. In Frontiers in Plant Science (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fpls.2022.1049803

Xiao, N., Ma, H., Wang, W., Sun, Z., Li, P., & Xia, T. (2024). Overexpression of ZmSUS1 increased drought resistance of maize (Zea mays L.) by regulating sucrose metabolism and soluble sugar content. Planta, 259(2), 43. https://doi.org/10.1007/s00425-024-04336-y

Yan, S., Weng, B., Jing, L., & Bi, W. (2023). Effects of drought stress on water content and biomass distribution in summer maize(Zea mays L.). Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1118131

Yang, Y., Li, A., Liu, Y., Shu, J., Wang, J., Guo, Y., Li, Q., Wang, J., Zhou, A., Wu, C., & Wu, J. (2024). ZmASR1 negatively regulates drought stress tolerance in maize. Plant Physiology and Biochemistry, 211, 108684. https://doi.org/10.1016/j.plaphy.2024.108684

Yu, H., Liu, B., Yang, Q., Yang, Q., Li, W., & Fu, F. (2024). Maize ZmLAZ1-3 gene negatively regulates drought tolerance in transgenic Arabidopsis. BMC Plant Biology, 24(1), 246. https://doi.org/10.1186/s12870-024-04923-x

Zhang, D., Zhang, Z., Li, C., Xing, Y., Luo, Y., Wang, X., Li, D., Ma, Z., & Cai, H. (2022). Overexpression of MsRCI2D and MsRCI2E Enhances Salt Tolerance in Alfalfa (Medicago sativa L.) by Stabilizing Antioxidant Activity and Regulating Ion Homeostasis. International Journal of Molecular Sciences, 23(17), 9810. https://doi.org/10.3390/ijms23179810

Zhang, X., Mi, Y., Mao, H., Liu, S., Chen, L., & Qin, F. (2020). Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnology Journal, 18(5), 1271–1283. https://doi.org/10.1111/pbi.13290

Zhu, D., Chang, Y., Pei, T., Zhang, X., Liu, L., Li, Y., Zhuang, J., Yang, H., Qin, F., Song, C., & Ren, D. (2020). MAPK‐like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. The Plant Journal, 102(4), 747–760. https://doi.org/10.1111/tpj.14660

Zhu, Y., Liu, Y., Zhou, K., Tian, C., Aslam, M., Zhang, B., Liu, W., & Zou, H. (2022). Overexpression of ZmEREBP60 enhances drought tolerance in maize. Journal of Plant Physiology, 275, 153763. https://doi.org/10.1016/j.jplph.2022.153763

Downloads

Published

2024-07-29

How to Cite

Adnan, M. R., Syawaluddin, A. R., Sholehah, A. M., Cahyani, D. D., Lailiyah, F., Sucahyo, G. H., Kurniawan, H., Aini, N., & Wilujeng, E. D. (2024). Combating Soil Drought in Maize (Zea mays L.): Genetic-Engineering Strategies for Drought Tolerant Varieties. Gontor Agrotech Science Journal, 10(1), 72–92. https://doi.org/10.21111/agrotech.v10i1.12211

Issue

Section

Articles