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Abstract 

 
Racing video game genre was still being popular today. One way to develop racing games quickly is by 
using a template or kit that is on the game engine. Racing Game Starter Kit (RGSK) was being the most 
popular racing game template for Unity game engine. However, there was problem in racing game’s 
NPC especially in RGSK related to NPC vehicle’s braking decision. The commonly used method is the 
Brake Zone, but the developers must manually place the zone themselves in the designated locations for 
braking. The solution that can be applied for that problem is see the angle formed by the vector of the 
NPC vehicle with the vector from 2 next following waypoint then determine the best configuration angle 
threshold for NPC braking, but this also has its shortcoming in which to get the best result, a proper 
threshold configuration is needed in each track. To resolve the problem, researcher proposed the 
method of machine learning, Naïve Bayes for the braking decision. Naïve Bayes uses two output classes 
(brake or no brake) in which the data will be obtained from the player. We use data from players who 
can control racing car games well or have never hit a wall and have fast lap times. The purpose of this 
study is to provide an alternative braking method to RGSK that can provide fast lap times but does not 
affect the game's FPS and without the need to determine or change any parameters on each track. The 
test result using RGSK v1.1.0a in Unity Game Engine showed that the proposed method can be an 
alternative method in RGSK braking decisions. Our NPC has faster lap time and was able to prevent 
the vehicle from crashing with the outer wall without dropping the game’s FPS (Frames per Second). 
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Abstrak 
 

Genre video gim balap masih populer saat ini. Salah satu cara untuk mengembangkan game balap 
dengan cepat adalah menggunakan template atau kit yang ada di game engine. Racing Game Starter 
Kit (RGSK) adalah templat game balap paling populer pada Unity Game Engine. Namun, terdapat 
permasalahan NPC pada gim balapan terutama di RGSK terkait dengan keputusan pengereman 
kendaraan NPC. Metode yang digunakan untuk eksperimen jenis ini adalah Zona Rem. Namun, 
pengembang harus secara manual menempatkan zona tersebut di lokasi tertentu pada setiap lintasan. 
Solusi dari masalah ini yang sudah diterapkan pada RGSK v1.1.0a yaitu dapat menggunakan sudut 
yang dibentuk oleh vektor kendaraan NPC dengan vektor dari 2 titik arah berikutnya, kemudian 
menentukan ambang sudut terbaik untuk pengereman NPC, tetapi ini juga memiliki masalah yaitu untuk 
mendapatkan hasil putaran terbaik atau cepat, perlu menentukan konfigurasi ambang batas yang tepat 
di setiap trek. Untuk mengatasi masalah tersebut, peneliti mengusulkan metode pembelajaran mesin, 
Naïve Bayes untuk keputusan pengereman. Naïve Bayes menggunakan dua kelas output (rem atau tidak 
ada mengerem) di mana data akan diperoleh dari pemain. Kami menggunakan data dari pemain yang 
dapat mengontrol permainan mobil balap dengan baik atau tidak pernah menabrak tembok dan 
memiliki waktu putaran yang cepat. Tujuan dari penelitian ini adalah untuk memberikan metode 
pengereman alternatif untuk RGSK yang dapat memberikan waktu putaran yang cepat namun tidak 
mempengaruhi FPS game dan tanpa perlu menentukan atau mengubah parameter apa pun di setiap 
trek. Hasil pengujian menggunakan RGSK v1.1.0a di Unity Game Engine menunjukkan bahwa metode 
yang diusulkan dapat menjadi metode alternatif dalam keputusan pengereman RGSK. NPC kami 
mempunyai waktu putaran yang lebih cepat dan mampu mencegah kendaraan agar tidak menabrak 
dinding luar tanpa menjatuhkan FPS game (Frame per Detik). 
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Unity Engine 
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1. INTRODUCTION 
Racing game or racing video game is one type 

of game that has been played since 1969. Racing game 
is one part of the vehicle simulations genre, which aims 
to provide an experience of how to drive various 
vehicles both real and imaginary. The racing game 
focuses on who gets to the finish line the fastest. Until 
now, racing games have a large number of enthusiasts, 
as evidenced by the success of various games such as 
the Need For Speed series whose entire series in 2009 
have sold 100 million copies [1] and sequels are still 
being made, Need For Speed Payback, which was 
released November 6, 2017 [2]. There are still many 
developers who want to develop racing games. One 
way to develop racing games quickly is using a 
template or kit that is on the game engine. Racing Game 
Starter Kit (RGSK) was being the most popular racing 
game template for Unity game engine [3]. RGSK has 
been the object of this research, with the aim of helping 
developers, especially indie developers who use these 
templates in the unity game engine, the issues raised 
will be explained in the next paragraph. 

The development of racing games is 
inseparable from the need for NPC (Non-Player 
Character) which is present in the form of auto-vehicle 
as the opponent to play against players [4]. NPC is 
important characters in the game [5]. In the NPC there 
is a logic given in the form of Pathfinding so that the 
NPC can drive on the right track [6]. The method that 
is often used is configuring Waypoints and division of 
grids with A * [7][8] [9] [10]. The development of 
physics game is increasingly advanced, causing the 
vehicle to move to resemble an original vehicle in the 
real world, so when passing the bend, speed must 
reduce. One component of NPC’s decision making is 
braking decisions which is about when the NPC should 
brake. One method that is often used is the brake zone 
[7], however this method is less effective because each 
path must be configured manually by installing a brake 
zone for each bend on all different trajectories. The 
example use of the brake zone is in the Racing Game 
Starter Kit (RGSK) v1.0.1 which has now depreciated 
[11]. Advanced development on RGSK v1.1.0a is the 
Smart AI System that takes into account the angles 
formed by the direction vector of the vehicle with the 
vector of the next waypoint for braking decision[11], 
however it is not known the most appropriate threshold 
angle to obtain the best braking performance in each 
track. In this study, we raise the issue of braking 
decisions at RGSK latest version v1.1.0a. The braking 
method in RGSK v1.1.0a is the same as the method in 
[9] and [8] research. 

Several previous literatures regarding the 
development of NPC’s behavior in racing games [9], 
[12], and [13]. In a recent work ([9] and [12]) used 
TORCS The Open Racing Car Simulator. In [9], 
TORCS was used to make simulated car racing 
championship and used angle and track sensors to 
determine the condition of the road (the road is straight 
or turn). However  the [9] scenario different with 

RGSK, sensor in RGSK is used to knowing other 
vehicle around the NPC itself. In [12] using genetic 
algorithm and Bezier curves to get optimal racing line. 
Racing line in [12] is same as waypoints in RGSK that 
is the line to follow to achieve the best lap-time possible 
on a given track, however braking decisions are still 
needed so that NPC vehicles do not leave the racing 
line. [13] compares the neural network and behavior 
base approach in making vehicle control simulations in 
racing games. Both methods succeed in defeating 3 
standard heuristic controllers. However [13] have 
different basic system with RGSK especially in 
waypoints. In [13]  the scenario is two waypoints are 
visible on the competition field unlike in RGSK,  
because this template is used to develop a racing game 
so we can access all the waypoints, and we should be 
able to take advantage of that. The approach from [13] 
which was use machine learning to develop the vehicle 
controller then we adapted in this research by 
improvising the input and use of real human players to 
get sample data. Another previous research [14] is 
using unity game engine to build racing game, however 
[14] research about improving the balance of players in 
racing games by adjusting several variables such as the 
speed of the player in order to keep up with other 
player.  

We proposed naïve bayes machine learning to 
solve these problems and used three inputs there were 
speed, turn’s angle, and distance between character and 
next turn. Sample data is obtained from human players 
who can play the RGSK standard game well without 
going off the track and having a fast time. The purpose 
of using a human player is for the NPC to learn the 
behavior of the player.  Naïve Bayes is a probability-
based classification algorithm that uses the Bayes 
theorem with an assumption that features that describe 
objects are not statistically bound to one another or 
independent [15]. Assumption owned by Naïve Bayes 
is rarely fulfilled in conditions in the real world, even 
so the Naïve Bayes approach can still function well 
even though its assumptions are not fulfilled. The 
training process and tests on Naïve Bayes can also be 
done quickly and are more tolerant of missing data 
compared to the Bayes Network classification. The 
Naïve Bayes method has been widely applied in various 
fields, several fields that are often used and proven to 
have effective performance, there are Real time 
Prediction, Text Classification, and Recommendation 
System. Naïve Bayes is also often used to help diagnose 
diseases, for example in heart disease [16]. Text 
classification has also been used mainly in spam 
filtering and also used in song lyrics [17]. Naïve Bayes 
has also begun to be examined in the field of games for 
example in the prediction of the RTS Game strategy 
[18] with 83.7% precision and 76.7% recall, predicted 
results in DOTA 2 [15] with accuracy 85.33% and for 
opening prediction in RTS Starcraft Game[19], NBA 
Game Result Prediction with 80% accuracy [20] . 
Naïve Bayes has a fast calculation speed and does not 
consume large computing resources [21]. So that it is 
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expected that Naïve Bayes will be effective to become 
an NPC braking decision that can be applied to racing 
games with accurate and efficient performance and 
better than the Smart AI System on RGSK. 
 
2. RESEARCH METHOD 

This study aims to create alternative method for 
braking decisions system at RGSK latest version 
v1.1.0a using naïve bayes method, problems from 
existing braking decision system has been explained in 
introduction. The steps in this study are determining the 
features or inputs for naive bayes system, designing 
braking decision systems, Implementation in RGSK 
unity game engine, data collection and testing. 

 
2.1. INPUTS FOR NAIVE BAYES SYSTEM 

We have decided to use 3 input features and two 
output classes for naïve bayes system. Those three input 
features are speed, turn’s angle, and distance between 
character and next turn. Those three features were 
inspired by H. Tang research [13] that use speed, 
distance and vector for his autonomous vehicle rule 
base. Two output classes for naïve bayes system are 
brake and no brake. 

The first feature is speed, that monitored by 
currentSpeed variable in default RGSK script. This 
feature is very influential on the decision to take the 
brake, because in low speeds the use of brakes is less 
frequent even though it will pass a sharp bend. At high 
speeds the brakes are more needed, especially when 
going through corners. Second and third features are 
turn’s angle and turn’s distance as illustrated in Figure 
1. Waypoints is the method for NPC navigation in the 
RGSK, therefore there are many waypoints placed 
along the circuit as seen in Figure 2 in the form of a 
green circle. The second and third features are 
calculated using vectors formed from waypoints along 
the circuit.  

 
Figure 1. Turn’s distance and angle 

 

 
Figure 2. RGSK Waypoints. 

 
2.2. DESIGN AND IMPLEMENTATION 

BRAKING DECISION SYSTEM. 
Braking decision system is designed by 

applying naïve bayes algorithm. The output of naïve 
bayes is a braking decision whether to brake or not. 
Naïve bayes is a classifier known to be simple and very 
efficient. It is called bayes because the probabilistic 
model is based on Bayes's theorem, and naive 
adjectives come from the assumption that features in a 
dataset are mutually independent. In practice, the 
independence assumption is often violated, but naive 
bayes classifiers still tend to perform very well under 
this unrealistic assumption, especially for small sample 
sizes, naive bayes classifiers can outperform the more 
powerful alternatives[22]. Naïve bayes equation is: 

 
        𝑝(𝐶|𝑥) =

(ೖ)(௫|ೖ)

(௫)
 (1) 

 
Where p(Ck|x) is posterior probability, p(Ck) is 

prior probability, p(x|Ck) is likelihood and p(x) is 
evidence. Naïve bayes for continuous data using 
Gaussian Probability which the equation is: 

 

𝑓(𝑥) =
ଵ

√ଶగఙమ
𝑒

ି
(ೣషഋ)మ

మమ   (2) 

 
We also use normalization for the system, the 

normalization used in the system is min-max 
normalization, which has the following equation: 

 

𝑋∗ =
ି୫୧୬ ()

௫()ି୫୧  ()
  (3) 

 
All those three-equation used inside the Naïve bayes 
system, first the training data normalized with min-max 
normalization (3), then enter the training phase for 
getting average, variance, and prior probability. In the 
testing phase, test data has also been normalized then 
calculated inside the naïve bayes for getting the braking 
decision between 1 (braking) and 0 (not braking). 
Figure 3 and 4 show our naïve bayes system flowchart. 
Inputs for naïve bayes consisting of speed, turn's angle, 
and distance between character and next waypoint are 
taken in a fixed update Unity life cycle. We added a 
new function to the OpponentController script in 
RGSK, we named it bayesBrake. bayesBrake is a 
function that contains naïve bayes algorithm that shown 
in Figure 3 and 4. OpponentController is a script in 

Waypoints 
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RGSK that is used to control NPC vehicles in RGSK. 
OpponentControler script contains navigateAi 
function. navigateAI is the main component to run the 
steering and throttling process on the NPC. We 
modified the navigateAi function by adding a process 
called the bayesBrake function. Figure 6 shows the 
distinction of program flow that occur in navigateAi 
before and after modification. We add the bayesBrake 
function call before the feedInput function call. By 
default RGSK has 2 kinds of methods to handle 
braking, first using the brake zone placed on the 
OnTrigger lifecycle, this is in the initial version of the 
RGSK and the second uses the maximum threshold 
angle that the NPC must consider braking, this is the 
last version of the RGSK. In this study RGSK has used 
the second braking method that is processed in the 
Acceleration, Braking & Steering Calculation section 
in the navigateAI function. We modified the workflow 
in navigateAI by eliminating the braking calculation 
process and replacing it by adding the bayesBrake 
function call before the feedInput function call. The 
feedInput function accepts the results from the previous 
calculation process in the form of values for braking, 
steering and acceleration and continues to the process 
of moving the vehicle according to the value received. 
The pseudo code for navigateAI can be shown in Figure 
5. 
 

 

Figure 3. Naïve Bayes Training Phase. 
 

 

Figure 4. Naïve Bayes Testing Phase. 
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void NavigateAI()  
{         
  Calculate AccelerationNSteering()   
  // code we add is in in below  
 float mybrake 
 Transform w1 = 
stats.lastPassedNode.position 
  Transform w2 = 
stats.NextlastPassedNode.position 
  Transform w3 = 
stats.TwoAheadNode.position 
  float distance = Vector3.Distance(w2, 
this.transform.position)  
  var w3w2 = (w3 - w2).normalized 
  var w2w1 = (w2 – w1).normalized 
  float angle = 
Vector3.Angle(w2w1,w3w2) 
  mybrake = 
bayesBrake.testing(currentSpeed, angle, 
distance)         
   
//Finaly, feed the input values , 
//throttle and steer are obtained from 
//the AccelerationNSteering calculation 
//process  
 
  FeedInput(throttle, mybrake, Steer) 
} 

Figure 5. navigateAI code 
 

 

Figure 6. navigateAI function 
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2.3. DATA COLLECTION 
There are three input features and two output 

classes used in the design. Those three features are 
speed, turn’s angle, and distance between character and 
next turn as illustrated in Figure 1. We gather the data 
from human player which has lap’s time faster than 
default RGSK Hard Bot and never both go off-road and 
hit the wall. Data captured every 0.02 second and every 
time brake was used. Player decision recorded with the 
value 1 for braking and 0 for not braking. Some sample 
data from player can be seen in Table 1. 

Table 1. Sample data from player 
No Speed 

(mil/h) 
Turn angle 

(degree) 
Distance Brake 

1 0 1.206259 26.7355 0 

2 58 0.5967609 8.97639 0 

3 108 4.589408 42.2416 0 

4 121 21.60911 7.30295 1 

5 116 14.32146 9.96055 1 

6 138 19.42491 20.2914 0 

7 140 19.42491 4.551 1 

8 90 33.28666 32.8786 1 

9 74 35.34315 31.0063 0 

10 150 16.94625 14.55 0 

 
2.4. TESTING SCENARIO 

Accuracy testing and three performance testing 
are used in this research. The simplest approach to 
measuring accuracy is to separate randomly available 
data into a set of training to produce a learning model 
and a set of tests to measure accuracy. This method, 
sometimes called a cross-validation holdout. However, 
this has a disadvantage that is if we use half the data for 
the test set, then we only train half the data, and we 
might get a bad hypothesis [23]. To be able to use lots 
of sample data and get accurate estimates, we used a 
technique called k-fold cross validation. In the k-fold 
cross validation, each sample data has a dual role as 
training data and test data. First, we divide the data into 
sets of equal parts. then do a learning round. At each 
round, 1 / k sample data is held as a test set and the 
remaining sample data is used as training data [23].  

The other test is frame per second (fps) testing, 
lap time and off-road testing. We test the FPS to find 
out if there are differences in the FPS between the 
method we propose and the default method of the 
RGSK. frames per second is the most commonly used 
metric as a performance evaluation of video games. A 
rule of thumb that most games are very fun to play with 
frame rates above 30 FPS. But games currently trying 
to reach a frame rate of 60 FPS in order to synchronize 
with the current screen [24]. The proposed Naive Bayes 
NPC and the Hard RGSK NPC goes through the circuit 
for 10 rounds on its own, then we capture the FPS using 
unity game engine tool. 

For lap time testing, Naïve Bayes NPC races 
against RGSK Hard Bot on the circuit for 10 laps. We 
chose RGSK Hard Bot because it is the default NPC 
RGSK that has the best racing ability. We want to know 
the lap time performance of the proposed method when 
compared to the best default NPC from RGSK. For 
offroad testing, the proposed Naive Bayes NPC and the 
Hard RGSK NPC goes through the circuit for 10 rounds 
on its own, then we analyzed the path taken by the two 
NPCs. 
 
3. RESULTS AND DISCUSSION 

K-Fold Cross validation testing and three 
performance testing are used in this research, Detailed 
explanation about each result and analysis is presented 
in the next few sections. We compared our proposed 
method with default NPC that is available in RGSK 
v1.1.0a. We chose the hardest NPC level because the 
NPC has the fastest lap time on the RGSK template. 
The braking method in RGSK v1.1.0a is the same as 
the method in Loiacono's research [13] and chan [8] 
which use angle value to determine braking decision. 
Brake Zone method was depreciated in RGSK 
template, so we didn’t compare with it. 
 
3.1. K-FOLD CROSS VALIDATION 

This test is done to get the accuracy and best 
classification model. This test is Table 2 shows the 
result of 5-Fold Cross validation, total 1958 samples 
data separated 80:20 for training set and testing set. 
Samples data rotated five times for cross validation to 
get the accuracy percentage. The average accuracy of 
the system as showed in Table 2 is 83.21%. The best 
classification model is rotation number 5. Then we use 
model 5 in another test. 

Table 2. Accuracy Testing 
Rotation (k) Correct Wrong Percentage (%) 

1 299 93 76.2 

2 368 24 93.8 

3 340 52 86.7 

4 232 160 59.1 

5 392 0 100 

Average 326.2 65.8 83.21 

 
3.2. FPS TEST 

We test the FPS to find out if there are 
differences in the FPS between the method we propose 
and the default method of the RGSK. Table 3 shows the 
average FPS for both NPC for every lap in 10 laps. Both 
NPC have stable 60 FPS for every lap with only 0.013 
frame average difference.  We conclude that there is no 
difference in fps or decrease in fps when using the 
proposed method. This game should still be smoothly 
run or can get good fps when played with a system that 
meets the minimum requirements. 
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Table 3. FPS Average 
Lap FPS (Bayes) FPS (NPC Hard) 

1 60.38596 60.3853 

2 60.38918 60.36808 

3 60.38906 60.36131 

4 60.36587 60.3387 

5 60.39067 60.35949 

6 60.35355 60.34107 

7 60.38358 60.39008 

8 60.3833 60.35792 

9 60.38409 60.38578 

10 60.36745 60.37215 

Average 60.379271 60.365988 

3.3. Lap Time Test 
This test is done to know the lap time 

performance of the proposed method when compared 
to the best default NPC from RGSK that is Hard NPC. 
Table 4 shows the result of the race for 10 laps. Both of 
NPC has stable time in lap 2 to lap 10. The difference 
in lap times in the first round is due to the two NPCs 
starting with speed = 0 at the start line and starting to 
accelerate to maximum speed, but for the rest of the 
rounds, the two NPCs are at their optimal speed when 
they cross the start or finish line. Naïve Bayes NPC 
wins over the Hard NPC for every lap through 10 laps. 
With total time difference 54.80 seconds and average 
time difference 5.48 seconds. As the race proceed, the 
distance between two NPC getting further away as 
shows in Figure 7 and with enough lap, Naïve Bayes 
NPC could overlap Hard NPC. We still have to look at 
the next test, which is the offroad test, because even 
though the NPC Naive Bayes is faster, there is still a 
possibility that this is due to the path taken by the Naive 
Bayes NPC out of the asphalt track since poor braking 
decisions. 

Table 4. NPC Lap Time 

Table Lap Bayes(mm:ss) Hard(mm:ss) 

1 01:01,86 01:05,63 

2 00:51,62 00:57,25 

3 00:51,42 00:57,40 

4 00:51,60 00:57,03 

5 00:51,81 00:56,93 

6 00:51,52 00:57,11 

7 00:51,76 00:57,14 

8 00:51,74 00:57,15 

9 00:51,22 00:57,29 

10 00:51,54 00:57,96 

Total 08:46,09 09:40,89 

Average 00:52,61 00:58,09 

 

 
Figure 7. Time Accumulation 

 
3.4. Offroad test 

For the off-road testing, both Naïve Bayes NPC 
and Hard RGSK NPC race alone for 10 laps, then we 
have drawn the path taken by the Naïve Bayes NPC 
with yellow line (Figure 8) and the Hard RGSK NPC 
with green line (Figure 9). Naïve bayes NPC hit the 
grass outside the road (offroad) in two area indicated by 
red line that can be shown in Figure 8, but never hit the 
boundary wall outside the road. While hard NPC as 
shows in Figure 9, only hit one area the same as the first 
area in Figure 8. All hit areas occur on a straight track 
after the vehicle turns at the corner.  We have analyzed 
why Naive Bayes NPCs are more frequently hit the 
grass, this is due to the turning angle that didn’t 
consider the vehicle direction, in some case even in the 
straight track, the NPC’s vehicle could have some angle 
that formed by the direction of the vehicle with the next 
waypoint vector after turning in previous corner, if the 
turn’s angle didn’t count the vehicle direction in that 
case (straight track after the vehicle turns at the corner), 
naïve bayes NPC thinks that it’s a safe angle (because 
straight track) and didn’t need to use brake. 
 

 

Figure 8. Naïve Bayes NPC Track line 
 

 
Figure 9. Hard NPC Track line 
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4. CONCLUSION  

The proposed method has been applied to Naive 
Bayes NPC and as we expected, the method we propose 
can be an alternative method for NPC braking decisions 
on RGSK. As seen in the test results, the average 
accuracy is quite good, 83.21%. Naive Bayes NPCs can 
provide faster lap times than the default Hard NPC, 
keeping the vehicle from crashing into the walls and 
having no FPS difference or FPS reduction when 
compared to the default RGSK method. However there 
still needs to be improvement, Naive Bayes NPCs still 
hit the grass more than NPC Hard. For future research, 
improvements can be made by considering vehicle 
direction as seen in off-road test the NPC’s vehicle 
could have some angle that formed by the direction of 
the vehicle with the next waypoint vector after turning 
in previous corner, if the turn’s angle didn’t count the 
vehicle direction in that case (straight track after the 
vehicle turns at the corner), naïve bayes NPC thinks 
that it’s a safe angle (because straight track)  and didn’t 
need to use brake. 
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