
Fountain of Informatics Journal Volume 4, No. 2, November 2019 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

61

NPC Braking Decision for Unity Racing Game Starter Kit Using Naïve Bayes

Muhammad Aminul Akbar 1) *, Tri Afirianto 2), Steven Willy Sanjaya 3) Ratih
Kartika Dewi 4)

Faculty of Computer Science, Brawijaya University, Indonesia 1,2,3,4)

muhammad.aminul@ub.ac.id 1) *, tri.afirianto@ub.ac.id 2) , steven.willy24@gmail.com 3),
ratihkartikad@ub.ac.id 4)

Abstract

Racing video game genre was still being popular today. One way to develop racing games quickly is by
using a template or kit that is on the game engine. Racing Game Starter Kit (RGSK) was being the most
popular racing game template for Unity game engine. However, there was problem in racing game’s
NPC especially in RGSK related to NPC vehicle’s braking decision. The commonly used method is the
Brake Zone, but the developers must manually place the zone themselves in the designated locations for
braking. The solution that can be applied for that problem is see the angle formed by the vector of the
NPC vehicle with the vector from 2 next following waypoint then determine the best configuration angle
threshold for NPC braking, but this also has its shortcoming in which to get the best result, a proper
threshold configuration is needed in each track. To resolve the problem, researcher proposed the
method of machine learning, Naïve Bayes for the braking decision. Naïve Bayes uses two output classes
(brake or no brake) in which the data will be obtained from the player. We use data from players who
can control racing car games well or have never hit a wall and have fast lap times. The purpose of this
study is to provide an alternative braking method to RGSK that can provide fast lap times but does not
affect the game's FPS and without the need to determine or change any parameters on each track. The
test result using RGSK v1.1.0a in Unity Game Engine showed that the proposed method can be an
alternative method in RGSK braking decisions. Our NPC has faster lap time and was able to prevent
the vehicle from crashing with the outer wall without dropping the game’s FPS (Frames per Second).

Keywords: Braking Decision, Racing Game Starter Kit, Naïve Bayes, Machine Learning, Unity Engine

Abstrak

Genre video gim balap masih populer saat ini. Salah satu cara untuk mengembangkan game balap
dengan cepat adalah menggunakan template atau kit yang ada di game engine. Racing Game Starter
Kit (RGSK) adalah templat game balap paling populer pada Unity Game Engine. Namun, terdapat
permasalahan NPC pada gim balapan terutama di RGSK terkait dengan keputusan pengereman
kendaraan NPC. Metode yang digunakan untuk eksperimen jenis ini adalah Zona Rem. Namun,
pengembang harus secara manual menempatkan zona tersebut di lokasi tertentu pada setiap lintasan.
Solusi dari masalah ini yang sudah diterapkan pada RGSK v1.1.0a yaitu dapat menggunakan sudut
yang dibentuk oleh vektor kendaraan NPC dengan vektor dari 2 titik arah berikutnya, kemudian
menentukan ambang sudut terbaik untuk pengereman NPC, tetapi ini juga memiliki masalah yaitu untuk
mendapatkan hasil putaran terbaik atau cepat, perlu menentukan konfigurasi ambang batas yang tepat
di setiap trek. Untuk mengatasi masalah tersebut, peneliti mengusulkan metode pembelajaran mesin,
Naïve Bayes untuk keputusan pengereman. Naïve Bayes menggunakan dua kelas output (rem atau tidak
ada mengerem) di mana data akan diperoleh dari pemain. Kami menggunakan data dari pemain yang
dapat mengontrol permainan mobil balap dengan baik atau tidak pernah menabrak tembok dan
memiliki waktu putaran yang cepat. Tujuan dari penelitian ini adalah untuk memberikan metode
pengereman alternatif untuk RGSK yang dapat memberikan waktu putaran yang cepat namun tidak
mempengaruhi FPS game dan tanpa perlu menentukan atau mengubah parameter apa pun di setiap
trek. Hasil pengujian menggunakan RGSK v1.1.0a di Unity Game Engine menunjukkan bahwa metode
yang diusulkan dapat menjadi metode alternatif dalam keputusan pengereman RGSK. NPC kami
mempunyai waktu putaran yang lebih cepat dan mampu mencegah kendaraan agar tidak menabrak
dinding luar tanpa menjatuhkan FPS game (Frame per Detik).

Kata kunci: Keputusan Pengereman, Permainan Balap Starter Kit, Naïve Bayes, Pembelajaran Mesin,
Unity Engine

DOI: http://dx.doi.org/10.21111/fij.v4i2.3591
Diterima: 27 Oktober 2019 Revisi: 5 November 2019 Terbit: 13 Desember 2019

Fountain of Informatics Journal Volume 4, No. 2, November 2019 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

62

1. INTRODUCTION
Racing game or racing video game is one type

of game that has been played since 1969. Racing game
is one part of the vehicle simulations genre, which aims
to provide an experience of how to drive various
vehicles both real and imaginary. The racing game
focuses on who gets to the finish line the fastest. Until
now, racing games have a large number of enthusiasts,
as evidenced by the success of various games such as
the Need For Speed series whose entire series in 2009
have sold 100 million copies [1] and sequels are still
being made, Need For Speed Payback, which was
released November 6, 2017 [2]. There are still many
developers who want to develop racing games. One
way to develop racing games quickly is using a
template or kit that is on the game engine. Racing Game
Starter Kit (RGSK) was being the most popular racing
game template for Unity game engine [3]. RGSK has
been the object of this research, with the aim of helping
developers, especially indie developers who use these
templates in the unity game engine, the issues raised
will be explained in the next paragraph.

The development of racing games is
inseparable from the need for NPC (Non-Player
Character) which is present in the form of auto-vehicle
as the opponent to play against players [4]. NPC is
important characters in the game [5]. In the NPC there
is a logic given in the form of Pathfinding so that the
NPC can drive on the right track [6]. The method that
is often used is configuring Waypoints and division of
grids with A * [7][8] [9] [10]. The development of
physics game is increasingly advanced, causing the
vehicle to move to resemble an original vehicle in the
real world, so when passing the bend, speed must
reduce. One component of NPC’s decision making is
braking decisions which is about when the NPC should
brake. One method that is often used is the brake zone
[7], however this method is less effective because each
path must be configured manually by installing a brake
zone for each bend on all different trajectories. The
example use of the brake zone is in the Racing Game
Starter Kit (RGSK) v1.0.1 which has now depreciated
[11]. Advanced development on RGSK v1.1.0a is the
Smart AI System that takes into account the angles
formed by the direction vector of the vehicle with the
vector of the next waypoint for braking decision[11],
however it is not known the most appropriate threshold
angle to obtain the best braking performance in each
track. In this study, we raise the issue of braking
decisions at RGSK latest version v1.1.0a. The braking
method in RGSK v1.1.0a is the same as the method in
[9] and [8] research.

Several previous literatures regarding the
development of NPC’s behavior in racing games [9],
[12], and [13]. In a recent work ([9] and [12]) used
TORCS The Open Racing Car Simulator. In [9],
TORCS was used to make simulated car racing
championship and used angle and track sensors to
determine the condition of the road (the road is straight
or turn). However the [9] scenario different with

RGSK, sensor in RGSK is used to knowing other
vehicle around the NPC itself. In [12] using genetic
algorithm and Bezier curves to get optimal racing line.
Racing line in [12] is same as waypoints in RGSK that
is the line to follow to achieve the best lap-time possible
on a given track, however braking decisions are still
needed so that NPC vehicles do not leave the racing
line. [13] compares the neural network and behavior
base approach in making vehicle control simulations in
racing games. Both methods succeed in defeating 3
standard heuristic controllers. However [13] have
different basic system with RGSK especially in
waypoints. In [13] the scenario is two waypoints are
visible on the competition field unlike in RGSK,
because this template is used to develop a racing game
so we can access all the waypoints, and we should be
able to take advantage of that. The approach from [13]
which was use machine learning to develop the vehicle
controller then we adapted in this research by
improvising the input and use of real human players to
get sample data. Another previous research [14] is
using unity game engine to build racing game, however
[14] research about improving the balance of players in
racing games by adjusting several variables such as the
speed of the player in order to keep up with other
player.

We proposed naïve bayes machine learning to
solve these problems and used three inputs there were
speed, turn’s angle, and distance between character and
next turn. Sample data is obtained from human players
who can play the RGSK standard game well without
going off the track and having a fast time. The purpose
of using a human player is for the NPC to learn the
behavior of the player. Naïve Bayes is a probability-
based classification algorithm that uses the Bayes
theorem with an assumption that features that describe
objects are not statistically bound to one another or
independent [15]. Assumption owned by Naïve Bayes
is rarely fulfilled in conditions in the real world, even
so the Naïve Bayes approach can still function well
even though its assumptions are not fulfilled. The
training process and tests on Naïve Bayes can also be
done quickly and are more tolerant of missing data
compared to the Bayes Network classification. The
Naïve Bayes method has been widely applied in various
fields, several fields that are often used and proven to
have effective performance, there are Real time
Prediction, Text Classification, and Recommendation
System. Naïve Bayes is also often used to help diagnose
diseases, for example in heart disease [16]. Text
classification has also been used mainly in spam
filtering and also used in song lyrics [17]. Naïve Bayes
has also begun to be examined in the field of games for
example in the prediction of the RTS Game strategy
[18] with 83.7% precision and 76.7% recall, predicted
results in DOTA 2 [15] with accuracy 85.33% and for
opening prediction in RTS Starcraft Game[19], NBA
Game Result Prediction with 80% accuracy [20] .
Naïve Bayes has a fast calculation speed and does not
consume large computing resources [21]. So that it is

Fountain of Informatics Journal Volume 4, No. 2, November 2019 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

63

expected that Naïve Bayes will be effective to become
an NPC braking decision that can be applied to racing
games with accurate and efficient performance and
better than the Smart AI System on RGSK.

2. RESEARCH METHOD

This study aims to create alternative method for
braking decisions system at RGSK latest version
v1.1.0a using naïve bayes method, problems from
existing braking decision system has been explained in
introduction. The steps in this study are determining the
features or inputs for naive bayes system, designing
braking decision systems, Implementation in RGSK
unity game engine, data collection and testing.

2.1. INPUTS FOR NAIVE BAYES SYSTEM

We have decided to use 3 input features and two
output classes for naïve bayes system. Those three input
features are speed, turn’s angle, and distance between
character and next turn. Those three features were
inspired by H. Tang research [13] that use speed,
distance and vector for his autonomous vehicle rule
base. Two output classes for naïve bayes system are
brake and no brake.

The first feature is speed, that monitored by
currentSpeed variable in default RGSK script. This
feature is very influential on the decision to take the
brake, because in low speeds the use of brakes is less
frequent even though it will pass a sharp bend. At high
speeds the brakes are more needed, especially when
going through corners. Second and third features are
turn’s angle and turn’s distance as illustrated in Figure
1. Waypoints is the method for NPC navigation in the
RGSK, therefore there are many waypoints placed
along the circuit as seen in Figure 2 in the form of a
green circle. The second and third features are
calculated using vectors formed from waypoints along
the circuit.

Figure 1. Turn’s distance and angle

Figure 2. RGSK Waypoints.

2.2. DESIGN AND IMPLEMENTATION

BRAKING DECISION SYSTEM.
Braking decision system is designed by

applying naïve bayes algorithm. The output of naïve
bayes is a braking decision whether to brake or not.
Naïve bayes is a classifier known to be simple and very
efficient. It is called bayes because the probabilistic
model is based on Bayes's theorem, and naive
adjectives come from the assumption that features in a
dataset are mutually independent. In practice, the
independence assumption is often violated, but naive
bayes classifiers still tend to perform very well under
this unrealistic assumption, especially for small sample
sizes, naive bayes classifiers can outperform the more
powerful alternatives[22]. Naïve bayes equation is:

 𝑝(𝐶|𝑥) =

(ೖ)(௫|ೖ)

(௫)
 (1)

Where p(Ck|x) is posterior probability, p(Ck) is

prior probability, p(x|Ck) is likelihood and p(x) is
evidence. Naïve bayes for continuous data using
Gaussian Probability which the equation is:

𝑓(𝑥) =
ଵ

√ଶగఙమ
𝑒

ି
(ೣషഋ)మ

మమ (2)

We also use normalization for the system, the

normalization used in the system is min-max
normalization, which has the following equation:

𝑋∗ =
ି୫୧୬ ()

௫()ି୫୧ ()
 (3)

All those three-equation used inside the Naïve bayes
system, first the training data normalized with min-max
normalization (3), then enter the training phase for
getting average, variance, and prior probability. In the
testing phase, test data has also been normalized then
calculated inside the naïve bayes for getting the braking
decision between 1 (braking) and 0 (not braking).
Figure 3 and 4 show our naïve bayes system flowchart.
Inputs for naïve bayes consisting of speed, turn's angle,
and distance between character and next waypoint are
taken in a fixed update Unity life cycle. We added a
new function to the OpponentController script in
RGSK, we named it bayesBrake. bayesBrake is a
function that contains naïve bayes algorithm that shown
in Figure 3 and 4. OpponentController is a script in

Waypoints

Fountain of Informatics Journal Volume 4, No. 2, November 2019 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

64

RGSK that is used to control NPC vehicles in RGSK.
OpponentControler script contains navigateAi
function. navigateAI is the main component to run the
steering and throttling process on the NPC. We
modified the navigateAi function by adding a process
called the bayesBrake function. Figure 6 shows the
distinction of program flow that occur in navigateAi
before and after modification. We add the bayesBrake
function call before the feedInput function call. By
default RGSK has 2 kinds of methods to handle
braking, first using the brake zone placed on the
OnTrigger lifecycle, this is in the initial version of the
RGSK and the second uses the maximum threshold
angle that the NPC must consider braking, this is the
last version of the RGSK. In this study RGSK has used
the second braking method that is processed in the
Acceleration, Braking & Steering Calculation section
in the navigateAI function. We modified the workflow
in navigateAI by eliminating the braking calculation
process and replacing it by adding the bayesBrake
function call before the feedInput function call. The
feedInput function accepts the results from the previous
calculation process in the form of values for braking,
steering and acceleration and continues to the process
of moving the vehicle according to the value received.
The pseudo code for navigateAI can be shown in Figure
5.

Figure 3. Naïve Bayes Training Phase.

Figure 4. Naïve Bayes Testing Phase.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

void NavigateAI()
{
 Calculate AccelerationNSteering()
 // code we add is in in below
 float mybrake
 Transform w1 =
stats.lastPassedNode.position
 Transform w2 =
stats.NextlastPassedNode.position
 Transform w3 =
stats.TwoAheadNode.position
 float distance = Vector3.Distance(w2,
this.transform.position)
 var w3w2 = (w3 - w2).normalized
 var w2w1 = (w2 – w1).normalized
 float angle =
Vector3.Angle(w2w1,w3w2)
 mybrake =
bayesBrake.testing(currentSpeed, angle,
distance)

//Finaly, feed the input values ,
//throttle and steer are obtained from
//the AccelerationNSteering calculation
//process

 FeedInput(throttle, mybrake, Steer)
}

Figure 5. navigateAI code

Figure 6. navigateAI function

Fountain of Informatics Journal Volume 4, No. 2, November 2019 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

65

2.3. DATA COLLECTION
There are three input features and two output

classes used in the design. Those three features are
speed, turn’s angle, and distance between character and
next turn as illustrated in Figure 1. We gather the data
from human player which has lap’s time faster than
default RGSK Hard Bot and never both go off-road and
hit the wall. Data captured every 0.02 second and every
time brake was used. Player decision recorded with the
value 1 for braking and 0 for not braking. Some sample
data from player can be seen in Table 1.

Table 1. Sample data from player
No Speed

(mil/h)
Turn angle

(degree)
Distance Brake

1 0 1.206259 26.7355 0

2 58 0.5967609 8.97639 0

3 108 4.589408 42.2416 0

4 121 21.60911 7.30295 1

5 116 14.32146 9.96055 1

6 138 19.42491 20.2914 0

7 140 19.42491 4.551 1

8 90 33.28666 32.8786 1

9 74 35.34315 31.0063 0

10 150 16.94625 14.55 0

2.4. TESTING SCENARIO

Accuracy testing and three performance testing
are used in this research. The simplest approach to
measuring accuracy is to separate randomly available
data into a set of training to produce a learning model
and a set of tests to measure accuracy. This method,
sometimes called a cross-validation holdout. However,
this has a disadvantage that is if we use half the data for
the test set, then we only train half the data, and we
might get a bad hypothesis [23]. To be able to use lots
of sample data and get accurate estimates, we used a
technique called k-fold cross validation. In the k-fold
cross validation, each sample data has a dual role as
training data and test data. First, we divide the data into
sets of equal parts. then do a learning round. At each
round, 1 / k sample data is held as a test set and the
remaining sample data is used as training data [23].

The other test is frame per second (fps) testing,
lap time and off-road testing. We test the FPS to find
out if there are differences in the FPS between the
method we propose and the default method of the
RGSK. frames per second is the most commonly used
metric as a performance evaluation of video games. A
rule of thumb that most games are very fun to play with
frame rates above 30 FPS. But games currently trying
to reach a frame rate of 60 FPS in order to synchronize
with the current screen [24]. The proposed Naive Bayes
NPC and the Hard RGSK NPC goes through the circuit
for 10 rounds on its own, then we capture the FPS using
unity game engine tool.

For lap time testing, Naïve Bayes NPC races
against RGSK Hard Bot on the circuit for 10 laps. We
chose RGSK Hard Bot because it is the default NPC
RGSK that has the best racing ability. We want to know
the lap time performance of the proposed method when
compared to the best default NPC from RGSK. For
offroad testing, the proposed Naive Bayes NPC and the
Hard RGSK NPC goes through the circuit for 10 rounds
on its own, then we analyzed the path taken by the two
NPCs.

3. RESULTS AND DISCUSSION

K-Fold Cross validation testing and three
performance testing are used in this research, Detailed
explanation about each result and analysis is presented
in the next few sections. We compared our proposed
method with default NPC that is available in RGSK
v1.1.0a. We chose the hardest NPC level because the
NPC has the fastest lap time on the RGSK template.
The braking method in RGSK v1.1.0a is the same as
the method in Loiacono's research [13] and chan [8]
which use angle value to determine braking decision.
Brake Zone method was depreciated in RGSK
template, so we didn’t compare with it.

3.1. K-FOLD CROSS VALIDATION

This test is done to get the accuracy and best
classification model. This test is Table 2 shows the
result of 5-Fold Cross validation, total 1958 samples
data separated 80:20 for training set and testing set.
Samples data rotated five times for cross validation to
get the accuracy percentage. The average accuracy of
the system as showed in Table 2 is 83.21%. The best
classification model is rotation number 5. Then we use
model 5 in another test.

Table 2. Accuracy Testing
Rotation (k) Correct Wrong Percentage (%)

1 299 93 76.2

2 368 24 93.8

3 340 52 86.7

4 232 160 59.1

5 392 0 100

Average 326.2 65.8 83.21

3.2. FPS TEST

We test the FPS to find out if there are
differences in the FPS between the method we propose
and the default method of the RGSK. Table 3 shows the
average FPS for both NPC for every lap in 10 laps. Both
NPC have stable 60 FPS for every lap with only 0.013
frame average difference. We conclude that there is no
difference in fps or decrease in fps when using the
proposed method. This game should still be smoothly
run or can get good fps when played with a system that
meets the minimum requirements.

Fountain of Informatics Journal Volume 4, No. 2, November 2019 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

66

Table 3. FPS Average
Lap FPS (Bayes) FPS (NPC Hard)

1 60.38596 60.3853

2 60.38918 60.36808

3 60.38906 60.36131

4 60.36587 60.3387

5 60.39067 60.35949

6 60.35355 60.34107

7 60.38358 60.39008

8 60.3833 60.35792

9 60.38409 60.38578

10 60.36745 60.37215

Average 60.379271 60.365988

3.3. Lap Time Test
This test is done to know the lap time

performance of the proposed method when compared
to the best default NPC from RGSK that is Hard NPC.
Table 4 shows the result of the race for 10 laps. Both of
NPC has stable time in lap 2 to lap 10. The difference
in lap times in the first round is due to the two NPCs
starting with speed = 0 at the start line and starting to
accelerate to maximum speed, but for the rest of the
rounds, the two NPCs are at their optimal speed when
they cross the start or finish line. Naïve Bayes NPC
wins over the Hard NPC for every lap through 10 laps.
With total time difference 54.80 seconds and average
time difference 5.48 seconds. As the race proceed, the
distance between two NPC getting further away as
shows in Figure 7 and with enough lap, Naïve Bayes
NPC could overlap Hard NPC. We still have to look at
the next test, which is the offroad test, because even
though the NPC Naive Bayes is faster, there is still a
possibility that this is due to the path taken by the Naive
Bayes NPC out of the asphalt track since poor braking
decisions.

Table 4. NPC Lap Time

Table Lap Bayes(mm:ss) Hard(mm:ss)

1 01:01,86 01:05,63

2 00:51,62 00:57,25

3 00:51,42 00:57,40

4 00:51,60 00:57,03

5 00:51,81 00:56,93

6 00:51,52 00:57,11

7 00:51,76 00:57,14

8 00:51,74 00:57,15

9 00:51,22 00:57,29

10 00:51,54 00:57,96

Total 08:46,09 09:40,89

Average 00:52,61 00:58,09

Figure 7. Time Accumulation

3.4. Offroad test

For the off-road testing, both Naïve Bayes NPC
and Hard RGSK NPC race alone for 10 laps, then we
have drawn the path taken by the Naïve Bayes NPC
with yellow line (Figure 8) and the Hard RGSK NPC
with green line (Figure 9). Naïve bayes NPC hit the
grass outside the road (offroad) in two area indicated by
red line that can be shown in Figure 8, but never hit the
boundary wall outside the road. While hard NPC as
shows in Figure 9, only hit one area the same as the first
area in Figure 8. All hit areas occur on a straight track
after the vehicle turns at the corner. We have analyzed
why Naive Bayes NPCs are more frequently hit the
grass, this is due to the turning angle that didn’t
consider the vehicle direction, in some case even in the
straight track, the NPC’s vehicle could have some angle
that formed by the direction of the vehicle with the next
waypoint vector after turning in previous corner, if the
turn’s angle didn’t count the vehicle direction in that
case (straight track after the vehicle turns at the corner),
naïve bayes NPC thinks that it’s a safe angle (because
straight track) and didn’t need to use brake.

Figure 8. Naïve Bayes NPC Track line

Figure 9. Hard NPC Track line

00:00.00
01:26.40
02:52.80
04:19.20
05:45.60
07:12.00
08:38.40
10:04.80
11:31.20

1 3 5 7 9

T
im

e
A

cc
um

ul
at

io
n

Lap

Bayes

Hard

Fountain of Informatics Journal Volume 4, No. 2, November 2019 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

67

4. CONCLUSION

The proposed method has been applied to Naive
Bayes NPC and as we expected, the method we propose
can be an alternative method for NPC braking decisions
on RGSK. As seen in the test results, the average
accuracy is quite good, 83.21%. Naive Bayes NPCs can
provide faster lap times than the default Hard NPC,
keeping the vehicle from crashing into the walls and
having no FPS difference or FPS reduction when
compared to the default RGSK method. However there
still needs to be improvement, Naive Bayes NPCs still
hit the grass more than NPC Hard. For future research,
improvements can be made by considering vehicle
direction as seen in off-road test the NPC’s vehicle
could have some angle that formed by the direction of
the vehicle with the next waypoint vector after turning
in previous corner, if the turn’s angle didn’t count the
vehicle direction in that case (straight track after the
vehicle turns at the corner), naïve bayes NPC thinks
that it’s a safe angle (because straight track) and didn’t
need to use brake.

5. REFERENCES

[1] F. Totu, “100 million Need for Speed Games

Have Been Sold to This Day.” .
[2] Electronics Arts, “Need For Speed Payback.,”

2017. .
[3] Unity, “Unity Asset Store.” .
[4] J. Wang, “Classification of Humans and Bots

in Two Typical Two-player Computer Games,”
in 2018 3rd International Conference on
Computer and Communication Systems
(ICCCS), 2018, pp. 502–505.

[5] I. Mabruroh and D. Herumurti, “Adaptive Non
Playable Character in RPG Game Using
Logarithmic Learning For Generalized
Classifier Neural Network (L-GCNN),” Kinet.
Game Technol. Inf. Syst. Comput. Network,
Comput. Electron. Control, vol. 4, no. 2, p. 127,
2019.

[6] Y. Sazaki, A. Primanita, and M. Syahroyni,
“Pathfinding car racing game using dynamic
pathfinding algorithm and algorithm A∗,” in
Proceedings - ICWT 2017: 3rd International
Conference on Wireless and Telematics 2017,
2018, vol. 2017-July, pp. 164–169.

[7] C. Bennett and D. V. Sagmiller, Unity AI
Programming Essentials. Packt Publishing
Limited, 2014.

[8] M. T. Chan, C. W. Chan, and C. Gelowitz,
“Development of a Car Racing Simulator
Game Using Artificial Intelligence
Techniques,” Int. J. Comput. Games Technol.,
vol. 2015, pp. 1–6, 2015.

[9] D. Loiacono et al., “The 2009 simulated car
racing championship,” IEEE Trans. Comput.
Intell. AI Games, vol. 2, no. 2, pp. 131–147,
2010.

[10] Y. Sazaki, H. Satria, and M. Syahroyni,
“Comparison of A∗ and dynamic pathfinding
algorithm with dynamic pathfinding algorithm
for NPC on car racing game,” Proceeding 2017
11th Int. Conf. Telecommun. Syst. Serv. Appl.
TSSA 2017, vol. 2018-Janua, pp. 1–6, 2018.

[11] I. Game, “Racing Game Starter Kit,” 2016. .
[12] M. Botta, V. Gautieri, D. Loiacono, and P. L.

Lanzi, “Evolving the optimal racing line in a
high-end racing game,” 2012 IEEE Conf.
Comput. Intell. Games, CIG 2012, pp. 108–
115, 2012.

[13] H. Tang, C. H. Tan, K. C. Tan, and A. Tay,
“Neural network versus behavior based
approach in simulated car racing game,” 2009
IEEE Work. Evol. Self-Developing Intell. Syst.
ESDIS 2009 - Proc., vol. 117576, pp. 58–65,
2009.

[14] J. E. Cechanowicz, C. Gutwin, S. Bateman, R.
Mandryk, and I. Stavness, “Improving player
balancing in racing games,” Proc. first ACM
SIGCHI Annu. Symp. Comput. Interact. Play -
CHI Play ’14, pp. 47–56, 2014.

[15] K. Wang and W. Shang, “Outcome prediction
of DOTA2 based on Naïve Bayes classifier,”
Proc. - 16th IEEE/ACIS Int. Conf. Comput. Inf.
Sci. ICIS 2017, no. 1994, pp. 591–593, 2017.

[16] M. A. Jabbar and S. Samreen, “Heart disease
prediction system based on hidden naïve bayes
classifier,” 2016 Int. Conf. Circuits, Control.
Commun. Comput. I4C 2016, pp. 1–5, 2017.

[17] Y. An, S. Sun, and S. Wang, “Naive Bayes
classifiers for music emotion classification
based on lyrics,” Proc. - 16th IEEE/ACIS Int.
Conf. Comput. Inf. Sci. ICIS 2017, no. 1, pp.
635–638, 2017.

[18] W. Hamilton and M. O. Shafiq, “Opponent
resource prediction in starcraft using imperfect
information,” Proc. - 9th IEEE Int. Conf. Big
Knowledge, ICBK 2018, pp. 368–375, 2018.

[19] G. Synnaeve and P. Bessière, “A Bayesian
model for opening prediction in RTS games
with application to StarCraft,” 2011 IEEE
Conf. Comput. Intell. Games, CIG 2011, pp.
281–288, 2011.

[20] F. Thabtah, L. Zhang, and N. Abdelhamid,
“NBA Game Result Prediction Using Feature
Analysis and Machine Learning,” Ann. Data
Sci., vol. 6, no. 1, pp. 103–116, 2019.

[21] A. Ashari, I. Paryudi, and A. Min,
“Performance Comparison between Naïve
Bayes, Decision Tree and k-Nearest Neighbor
in Searching Alternative Design in an Energy
Simulation Tool,” Int. J. Adv. Comput. Sci.
Appl., vol. 4, no. 11, pp. 33–39, 2013.

[22] S. Raschka, “Naive Bayes and Text
Classification I - Introduction and Theory,” pp.
1–20, 2014.

[23] S. J. Russell and P. Norvig, Artificial
Intelligence A Modern Approach;

Fountain of Informatics Journal Volume 4, No. 2, November 2019 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

68

PearsonEducation. 2003.
[24] K. T. Claypool and M. Claypool, “On frame

rate and player performance in first person
shooter games,” Multimed. Syst., vol. 13, no. 1,
pp. 3–17, 2007.

