Analisis Pengaruh Diameter Kawat terhadap Distribusi Kapasitansi dari Wire Mesh Sensor Tomography menggunakan Convolutional Neural Network
DOI:
https://doi.org/10.21111/fij.v7i3.9442Keywords:
Wire Diameter, Capacitance Distribution, Wire Mesh Sensor, Convolutional Neural Network (CNN)Abstract
AbstrakWire Mesh Sensor (WMS) adalah sensor berbasis tomografi yang menghasilkan gambar distribusi aliran fluida. Citra distribusi merupakan pola distribusi kapasitansi yang diukur dengan elektroda sensor. Dari hasil simulasi dilakukan analisis terhadap pola sebaran potensial listrik untuk mengetahui karakteristik potensial listrik dari sistem WMS yang dimodelkan. Ditemukan ada perbedaan parameter berupa variasi jenis larutan yang dapat mempengaruhi distribusi potensial listrik. Hal ini disebabkan adanya perbedaan nilai konstanta dielektrik masing-masing jenis larutan. Kinerja sistem WMS dalam mendeteksi anomali dievaluasi dengan menganalisis perubahan distribusi kapasitansi terhadap pengaruh perubahan diameter kawat. Hasil simulasi menunjukkan bahwa jenis fluida pada kondisi tanpa dan dengan anomali dapat dibedakan dengan jelas melalui pola distribusi kapasitansi yang diukur untuk seluruh diameter kawat. Diameter kawat hanya mempengaruhi kualitas gambar distribusi. Penelitian kualitas citra ini berbasis Convolutional Neural Network (CNN) menggunakan arsitektur MobileNet. Teknik khusus utama pada algoritma CNN adalah convolution, di mana filter meluncur di atas input dan menggabungkan nilai input + nilai filter pada peta fitur. Tujuan akhirnya adalah CNN mampu mengenali objek atau gambar baru berdasarkan fitur-fitur yang dideteksi. Perancangan sistem dibagi menjadi beberapa tahapan dimulai dari penginputan data citra, tahap selanjutnya adalah preprocessing, pada penelitian ini menggunakan dua jenis preprocessing yaitu filter CLAHE dan Filter Gaussian.Kata kunci: Diameter Kawat; Distribusi Kapasitansi; Wire Mesh Sensor; Convolutional Neural Network (CNN) Abstract[Analysis of the Effect of Wire Diameter on the Capacitance Distribution of Wire Mesh Tomography Sensors using a Convolutional Neural Network] Wire Mesh Sensor (WMS) is a tomography-based sensor that produces a distribution image of a fluid flow. The distribution image is a capacitance distribution pattern measured by sensor electrode. From the simulation results, an analysis is carried out on the distribution pattern of the electric potential for know the electrical potential characteristics of the modeled WMS system. It was found that the difference parameters in the form of variations in the type of solution can affect the distribution of electric potential. This is due to there is a difference in the value of the dielectric constant of each type of solution. WMS system performance in detecting anomalies is evaluated by analyzing changes in the capacitance distribution to the effect of change in wire diameter. The simulation results show that the type of fluid in conditions without and with anomalies can be clearly distinguished through the measured capacitance distribution pattern for the entire wire diameter. Wire diameter only affects the distribution image quality. This image quality research is based on Convolutional Neural Network (CNN) uses Mobile Net architecture. The main special technique to the CNN algorithm is convolution, in which the filter slides over the input and combines the input value + filter value on the feature map. The ultimate goal is that CNN is able to recognize new objects or images based on the detected features. The design of the system is divided into several stages starting from inputting data image, the next stage is preprocessing, in this study using two types of preprocessing, i.e. CLAHE and Gaussian filters.Keywords: Wire Diameter; Capacitance Distribution; Wire Mesh Sensor; Convolutional Neural Network (CNN)References
J. W. Lee, H. Heo, D. K. Sohn, and H. S. Ko, “Development of a numerical method for multiphase flows using an electrostatic model in a wire-mesh sensor,” Eng. Appl. Comput. Fluid Mech., vol. 15, no. 1, pp. 344–362, Jan. 2021, doi: 10.1080/19942060.2021.1876775.
F. D. A. Dias, P. Wiedemann, M. J. da Silva, E. Schleicher, and U. Hampel, “Tuning capacitance wire-mesh sensor gains for measurement of conductive fluids,” Tech. Mess., vol. 88, no. S1, pp. S107–S113, Sep. 2021, doi: 10.1515/TEME- 2021-0055.
K. Li, Q. Wang, M. Wang, and Y. Han, “Imaging of a distinctive large bubble in gas–water flow based on a size projection algorithm,” Meas. Sci. Technol., vol. 30, no. 9, p. 094004, Jul. 2019, doi: 10.1088/1361-6501/AB16B0.
L. Andiani, A. Rohsari, and I. Utami, “Analisis Pengaruh Diameter Kawat terhadap Distribusi Kapasitansi dari Wire Mesh Sensor: Studi Kasus Simulasi Sistem Deteksi Anomali pada Saluran Pembuangan Limbah Industri,” POSITRON, vol. 11, no. 2, pp. 104–111, Dec. 2021, doi: 10.26418/POSITRON.V11I2.50072.
A. I. (Ali) Hameed, L. A. (Lokman) Abdulkareem, and R. A. (Raid) Mahmood, “Experimental Comparison Between Wire Mesh and Electrical Capacitance Tomography Sensors to Predict A Two-Phase Flow Behaviour and Patterns in Inclined Pipe,” Technium, vol. 3, no. 5, pp. 49–63, Jun. 2021, doi: 10.47577/TECHNIUM.V3I5.3938.
M. Lehti-Polojärvi et al., “Retrieval of the conductivity spectrum of tissues in vitro with novel multimodal tomography,” Phys. Med. Biol., vol. 66, no. 20, p. 205016, Oct. 2021, doi: 10.1088/1361-6560/AC2B7F.
M. Vauhkonen, A. Hänninen, J. Jauhiainen, and
O. Lehtikangas, “Multimodal imaging of multiphase flows with electromagnetic flow tomography and electrical tomography,” Meas. Sci. Technol., vol. 30, no. 9, p. 094001, Jul. 2019, doi: 10.1088/1361-6501/AB1EF7.
K. Sun and Y. Li, “An HDTV-SB imaging algorithm for wire-mesh tomography,” Meas. Sci. Technol., vol. 31, no. 4, p. 045404, Jan. 2020, doi: 10.1088/1361-6501/AB463F.
P. Ghoshal, F. Sinha, S. Sen, G. Das, and P. K. Das, “Development and Application of Wire Mesh Tomography for Gas‐Liquid Systems,” AIP Conf. Proc., vol. 1050, no. 1, p. 175, Sep. 2008, doi: 10.1063/1.2999986.
F. D. A. Dias, P. Wiedemann, E. Schleicher, M.J. Da Silva, and U. Hampel, “Improvement of wire-mesh sensor accuracy via adapted circuit
Downloads
Submitted
Accepted
Published
Issue
Section
License
Copyright (c) 2023 Mahendra Satria Hadiningrat

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Please find the rights and licenses in the Fountain of Informatics Journal (FIJ). By submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
2. Author(s)' Warranties
The author warrants that the article is original, written by the stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author, and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User/Public Rights
FIJ's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, FIJ permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and FIJ on distributing works in the journal and other media of publications. Unless otherwise stated, the authors are public entities as soon as their articles got published.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
- Copyright and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in own future works, including lectures and books,
- The right to reproduce the article for own purposes,
- The right to self-archive the article (please read out deposit policy),
- The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal (Jurnal Optimasi Sistem Industri).
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. FIJ will not be held liable for anything that may arise due to the author(s) internal dispute. FIJ will only communicate with the corresponding author.
6. Royalties
Being an open accessed journal and disseminating articles for free under the Creative Commons license term mentioned, author(s) aware that FIJ entitles the author(s) to no royalties or other fees.
7. Miscellaneous
FIJ will publish the article (or have it published) in the journal if the article’s editorial process is successfully completed. FIJ's editors may modify the article to a style of punctuation, spelling, capitalization, referencing, and usage that deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers as mentioned in point 3.