
Fountain of Informatics Journal Volume 6, No. 2, November 2021 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

51

Development of Non-Player Character for 3D Kart Racing Game Using

Decision Tree

Nashrul Azhar Mas’udi 1) *, Muhammad Aminul Akbar 2), Eriq Muhammad Adams

Jonemaro 3), Tri Afirianto 4)

Faculty of Computer Science, Brawijaya University, Indonesia 1,2,3,4)

nashazhar25@gmail.com 1) *, eriq.adams@ub.ac.id 2), muhammad.aminul@ub.ac.id 3) , tri.afirianto@ub.ac.id 4)

Abstract

Racing game is one of the genre that’s still popular today. Unity is one of many game engines one can

use to develop a racing game. At Unity Asset Store, there is a free template called Micro-Game Karting

which can only be played alone. In order to play player versus enemy mode, an artificial intelligence

(AI) is needed for directing non-player character (NPC) who acts as the opponent. In racing game, the

AI requires the use of movement algorithm and decision making system. For this study, the movement

algorithm will use pathfinding. The algorithm is used as a guiding path when NPC is moving and

avoiding obstacles in the way. Pathfinding will use waypoint system and raycasting to accomplish it.

The decision making technique that will be used is decision tree. It functions as decision maker for NPC

so it can determine the correct action to be done at certain time. As for FPS (frame per second) test,

performance suffers 0.2-0.3 FPS decrease for every addition of 2 NPCs. According to lap time test, the

developed NPCs are faster than the machine learning NPC examples provided by the template and

driving test showed favorable outcome.

Keywords: racing game, Unity, non-player character (NPC), waypoint system, raycasting, decision

tree

Abstrak

Game balap masih menjadi salah satu genre yang diminati saat ini. Unity adalah salah satu game

engine yang dapat digunakan untuk mengembangkan game balap. Pada Unity Asset Store, terdapat

suatu template gratis dengan nama Micro-Game Karting. Template ini hanya dapat dimainkan seorang

diri dan belum ada lawan yang tersedia. Supaya dapat dimainkan untuk melawan komputer, dibutuhkan

kecerdasan buatan atau artificial intelligence (AI) untuk menjalankan non-player character (NPC)

yang bertindak sebagai musuh. AI pada NPC dalam game balap harus memiliki kecerdasan seperti

movement dan decision making. Pada movement, metode yang digunakan pada penelitian ini adalah

pathfinding. Metode ini digunakan oleh NPC sebagai panutan dalam bergerak dan menghindari

rintangan dari suatu lintasan. Pathfinding akan dilakukan dengan menggunakan sistem waypoint dan

raycasting. Pada decision making, metode yang digunakan adalah decision tree. Metode ini berfungsi

sebagai pembuat keputusan untuk NPC agar dapat menentukan aksi yang tepat untuk dilakukan pada

waktu tertentu. Hasil pengujian FPS menunjukkan kinerja game hanya mengalami penurunan 0,2-0,3

FPS untuk setiap penambahan 2 NPC, sedangkan hasil pengujian waktu putaran menunjukkan NPC

yang telah dikembangkan lebih cepat daripada contoh NPC machine learning yang disediakan templat.

Hasil pengujian berkendara menunjukkan hasil yang cukup baik.

Kata kunci: racing game, Unity, non-player character (NPC), sistem waypoint, raycasting, decision

tree

1. INTRODUCTION

Nowadays, there are many games with different

genres, themes, and objectives. One of the genre that’s

still popular today is racing game. According to an

article [1], Mario Kart Wii, a racing game, is ranked 7th

in Top 10 Best-Selling Video Games of All Time. In

2019 alone, there are at least 16 racing game being

released, such as Dirt Rally 2.0, Team Sonic Racing, F1

2019, GRID, Need for Speed Heat, etc [2].

To develop a game, one surely need to use a

game engine. Game engine is a software created

specifically for developing a game. One of many game

engines one can use is Unity. The game development

process can be made faster by using templates provided

from Unity Asset Store.

At Unity Asset Store, there is a free template

called Micro-Game Karting. This template can only be

played in one player mode and there are no available

DOI: http://dx.doi.org/10.21111/fij.v6i2.4678

Diterima: 27 Juli 2020 Revisi: 22 Mei 2021 Terbit: 27 Juni 2021

mailto:nashazhar25@gmail.com
mailto:eriq.adams@ub.ac.id
mailto:muhammad.aminul@ub.ac.id
mailto:tri.afirianto@ub.ac.id
http://dx.doi.org/10.21111/fij.v6i2.4678

Fountain of Informatics Journal Volume 6, No. 2, November 2021 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

52

opponents. In order to play in another mode, namely

player versus enemy (PvE), an artificial intelligence

(AI) is needed for directing non-player character (NPC)

who acts as the opponent.

Racing game with no opponents is not really

fun. This is because, in general, playing a racing game

requires at least 2 players. Game with 2 players or more

is often in the form of competition or rivalry between

players with a clear outcome, winning or losing. Even

if the feeling of having fun is subjective, the feeling

when one wins can contribute to giving the feeling of

having fun to some players [3].

The proposed methods for developing AI in

racing game is pathfinding and decision tree.

Pathfinding is a movement algorithm which is part of

the game AI model [4]. It is accomplished by using

waypoint system and raycasting. Decision tree is a

decision making technique which is part of game AI

model [4]. It functions as the NPC’s brain so it can

determine the appropriate action to be done at the

correct time.

The reason waypoint system is chosen is

because in [5], the use of waypoint system with vector

calculations, conditional monitoring system, and

artificial environment perception can provide the player

with a challenging and enjoyable experience. They also

added that Unity supported efficient development of

racing game because component of waypoint system,

physics engine, and vector calculation vector is

provided by Unity.

Waypoint system is complemented with the

addition of raycasting as visual sensor for the NPC. It

is used for collision detection inside the game

environment [6]. Raycasting helps the NPC to detect

obstacles, such as another NPC in the race, so the NPC

can avoid it while the NPC is moving in the course.

Decision tree is chosen because [7] said in their

paper that by using decision tree and finite state

machine, the NPC can be made better into a creative

and diversified game-agents which leads to increased

fun factor and life cycle of games. Another paper [8]

showed that decision tree have better performance than

neural network and table lookup.

The performance of a game can be known by

doing FPS (frame per second) test to measure the frame

rate of said game. The value of this frame rate directly

impacts the player’s ability to enjoy some, if not all,

games. According to [9], frame rate has a higher impact

than frame resolution in player performance. The test

result in first-person shooter game shows a good frame

rate is very important to the player performance. When

the frame rate is very low (3-7 FPS), the player cannot

adequately target opponents. This is very different

compared to when the frame rate is high (60 FPS), the

player performance increased by 7-fold over a frame

rate of 3 FPS. On another note, frame resolution has

little effect on player performance. Players are still able

to effectively target opponents even at low frame

resolution. Based on these results, it can be concluded

that a high frame rate means the player can provide

their desired action in response which leads to giving

enjoyable gaming experience.

2. RESEARCH METHOD

Steps for developing AI of NPC starts with

identifying attributes and behaviors the NPC has then

designing waypoint system, raycasting, and decision

tree. These designs will be used as references for

implementing them.

2.1. IDENTIFYING ATTRIBUTES AND

BEHAVIORS

NPC’s attributes and behaviors can be obtained

by looking at inputs that can be done by the player for

directing their kart in Micro-Game Karting. The

obtained attributes and behaviors is added with sensor

components for NPC. Table 1 shows NPC’s attributes

and behaviors.

Tabel 1. NPC’s attributes and behaviors

No Attributes Behavior

1. Accelerate NPC can accelerate

2. Brake NPC can brake

3. Steer left NPC can turn left

4. Steer right NPC can turn right

5. Check front NPC can look at front to check for kart

6.
Check front

left

NPC can look at front left to check for

kart

7.
Check front

right

NPC can look at front right to check for

kart

8. Check left NPC can look at left to check for wall

9. Check right NPC can look at right to check for wall

2.2. WAYPOINT SYSTEM DESIGN AND

IMPLEMENTATION

Waypoint system is one of many pathfinding

techniques. Pathfinding is a method for directing agent

from point A to point B [10]. This direction is used by

agent as the main way to move and to avoid obstacles

from the course.

All places which can be reached by waypoints

should be reachable from any waypoints by traveling

along one or more waypoints, resulting in a path the

agent can move on [11]. For better navigation, the agent

needs to know what the current waypoint is and

whether the path can only be passed once (open path)

or the path is a circuit, which means it will return to the

first waypoint in the list and start all over again (closed

path) [12].

Figure 1 shows the flowchart of waypoint sytem

design. After waypoints have been initialized, the loop

is done to check all waypoints one by one, if the current

waypoint is close to NPC, then proceeds to check the

next waypoint in the list. This is done until all

waypoints has been checked. Current waypoint is

checked whether it is on the left side or the right side of

NPC. If it is on the left side, then NPC turns left. If it is

on the right side, then NPC turns right. If it is in neither

side or does not exist, then NPC does not turn.

Waypoint system implementation starts with

placing waypoints in the game environment or the track

Fountain of Informatics Journal Volume 6, No. 2, November 2021 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

53

course. Waypoint is represented with green color and

connected by green line, for better visualization when

doing implementation process. Figure 2 shows

waypoints in two circuit track. Figure 3 shows

pseudocode for waypoint system.

Figure 1. Flowchart of waypoint system design

Figure 2. Waypoints in two circuit tracks

Pseudocode 1: Waypoint System

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

BEGIN

 Transform[] waypoints;

 int currentWpIdx = 0;

 Transform activeWaypoint =

waypoints[currentWpIdx];

 REPEAT

 IF activeWaypoint exists THEN

 IF activeWaypoint is on left side of

NPC THEN

 steer left;

 ELSEIF activeWaypoint is on right

side of NPC THEN

 steer right;

 ELSE

 don’t steer;

 ENDIF

 ENDIF

 IF activeWaypoint is close THEN

 IF currentWpIdx >= waypoints.Length

THEN

 currentWpIdx = 0;

 ELSE

 currentWpIdx++;

 ENDIF

 activeWaypoint =

waypoints[currentWpIdx];

 ENDIF

 UNTIL Player/NPC reaches finish line on

last lap

END

Gambar 3. Pseudocode untuk sistem waypoint

2.3. RAYCASTING DESIGN AND

IMPLEMENTATION

Raycasting is the process of shooting an invisible

ray from a point, in a specified direction to detect

whether any colliders (used by game objects) lay in the

path of the ray [6]. Raycasting here is used as visual

sensor by the agent to observe and detect obstacles.

The first step of the design is installing ray on the

NPC. Figure 4 shows ray installation on NPC. Three

rays on the front (F, FL, and FR) is for detecting karts.

Their lengths are 7, 5, and 5 cm, respectively. Two rays

on the side (L and R) is for detecting walls. Both are 1

cm in length. Figure 5 shows the flowchart of

raycasting design.

Figure 4. Ray installation

Figure 5. Flowchart of raycasting design

The next step is initializing raycasts with installed

rays, then proceeds to check detection result from each

raycasts. If kart is not detected in front, then check

whether there are walls on both left and right side. If

there are, then NPC stops by braking. If it is only on left

side, then NPC turns right. If it is only on right side,

then NPC turns left. If there are no walls on either side,

then do nothing. However, if there is a kart in front,

then check whether there are karts on both front left and

front right. If on both, then NPC does not turn. If only

in front left, then NPC turns right. If only in front right,

then NPC turns left. If there is a kart in front and there

Fountain of Informatics Journal Volume 6, No. 2, November 2021 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

54

are no karts in front left and front right, then NPC can

turn left or turn right. Figure 6 shows pseudocode for

raycasting.

Pseudocode 2: Raycasting

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

BEGIN

 Ray rayF = from in front of NPC to

forward;

 Ray rayFL = from in front of NPC to

front left;

 Ray rayFR = from in front of NPC to

front right;

 Ray rayL = from left side of NPC to

left;

 Ray rayR = from right side of NPC to

right;

 REPEAT

 IF rayF hit kart with maxDistance of 7

on layer kart THEN

 IF rayFL hit kart with maxDistance

of 5 on layer kart THEN

 IF rayFR hit kart with maxDistance

of 5 on layer kart THEN

 brake;

 ELSE

 steer right;

 ENDIF

 ELSE

 IF rayFR hit kart with maxDistance

of 5 on layer kart THEN

 steer left;

 ELSE

 steer left OR right;

 ENDIF

 ENDIF

 ELSE

 IF rayL hit wall with maxDistance of

1 on layer wall THEN

 IF rayR hit wall with maxDistance

of 1 on layer wall THEN

 don’t steer;

 ELSE

 steer right;

 ENDIF

 ELSE

 IF rayR hit wall with maxDistance

of 1 on layer wall THEN

 steer left;

 ENDIF

 ENDIF

 ENDIF

 UNTIL Player/NPC reaches finish line on

last lap

END

Figure 6. Pseudocode for raycasting

2.4. DECISION TREE DESIGN AND

IMPLEMENTATION

Decision tree is one of the simplest decision

making techniques because it is fast, easy to understand

and implement [4] . Decision tree consisted of inter

connected decision node. The beginning node of

decision tree is called root. Starting from root, a

collection of choices is chosen in successive from every

decision. Each decision is chosen based on the

knowledge of the character. This is done until the

selection process could not find another decision to

consider. On each leaf (the last node which has no

branch), there is an action, when reached, will be

immediately executed.

Both flowcharts in Figure 1 and 5 is converted into

decision tree diagram. For each decision or branching

point in the tree, classes will be created. It is likewise

for each leaf on the diagram.

Figure 7 shows decision tree diagram of waypoint

system design. It starts with checking whether there is

an active waypoint or the waypoint which NPC is

currently heading. If it does not exist, then NPC does

not turn. If it exists, then proceed to check whether it is

on the left side or right side of NPC. If on the left side,

then NPC accelerates and turns left. If on the right side,

then NPC accelerates and turns right. If it is in neither

side, then NPC does not turn.

Figure 7. Decision tree diagram of waypoint

system

Figure 8. Decision tree diagram of raycasting

Figure 8 shows decision tree diagram of raycasting

design. It starts with checking whether there is a kart in

front of NPC. If there is none, then proceeds to check

whether there are walls on left and right side. If on both,

then NPC does not turn. If only on left side, then NPC

accelerates and turns right. If only right side, then NPC

accelerates and turns left. If in neither side, then do

nothing. However, if there is a kart in front, then checks

whether there are karts on left side and right side. If on

both, then NPC stops by braking. If only on left side,

then NPC accelerates and turns right. If only on right

side, then NPC accelerates and turns left. If there is a

kart in front but no karts on left side and right side, then

NPC accelerates and can turn left or right.

The result of both diagram in Figure 7 and Figure

8 is used by the NPC for making decision in choosing

whether to accelerate, brake, or turn. First decision is

obtained from decision tree of waypoint system.

Second one is obtained from decision tree of raycasting.

Fountain of Informatics Journal Volume 6, No. 2, November 2021 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

55

The first decision will be executed by NPC as long as

NPC does not detect obstacles (karts or walls). If an

obstacle is detected, then the second decision is

executed instead. If the result of the second decision is

a null, when NPC does not detect kart in front and does

not detect walls, then NPC executes the first decision.

Based on decision tree diagram in Figure 7 and

Figure 8, a class diagram will be designed according to

available decisions and leaves. Class diagram begins

with designing parent class DTNode which will be

inherited to pseudo-abstract class Decision and

Action. Next is designing the inherited class from

Decision and Action. Figure 9 shows class diagram of

decision tree. Figure 10 shows pseudocode for decision

tree.

Figure 9. Class diagram of decision tree

Pseudocode 3: Decision Tree

1

2

3

4

5

6

7

8

9

BEGIN

 Decision waypointOnRight = new

D_CheckRightSide {

 WaypointPos = waypoint position

relative to NPC,

 NodeTrue = steer right,

 NodeFalse = don’t steer

 };

 Decision waypointOnLeft = new

D_CheckLeftSide {

 WaypointPos = waypoint position

relative to NPC,

 NodeTrue = steer left,

 NodeFalse = waypointOnRight

 };

 Decision rootWaypoint = new

D_CheckWaypoint {

 ActiveWaypoint = activeWaypoint,

 NodeTrue = waypointOnLeft,

 NodeFalse = don’t steer

 };

 A_KartControl kControl =

rootWaypoint.MakeDecision();

 m_Acceleration = kControl.AccelValue;

 m_Steering = kControl.SteerValue;

 Decision senseFR = new D_SenseFRight {

 StartPoint = start point of the ray,

 NodeTrue = steer left,

 NodeFalse = steer left OR right

 };

 Decision senseFL = new D_SenseFLeft {

10

11

12

13

14

15

16

17

18

 StartPoint = start point of the ray,

 NodeTrue = steer right,

 NodeFalse = senseFR

 };

 Decision senseFLFR = new

D_SenseFLeftFRight {

 StartPoint = start point of the ray,

 NodeTrue = brake,

 NodeFalse = senseFL

 };

 Decision senseR = new D_SenseRight {

 StartPoint = start point of the ray,

 NodeTrue = steer left,

 NodeFalse = null

 };

 Decision senseL = new D_SenseLeft {

 StartPoint = start point of the ray,

 NodeTrue = steer right,

 NodeFalse = senseR

 };

 Decision senseLR = new D_SenseLeftRight {

 StartPoint = start point of the ray,

 NodeTrue = don’t steer,

 NodeFalse = senseL

 };

 Decision rootSensor = new D_SenseFront {

 StartPoint = start point of the ray,

 NodeTrue = senseFLFR,

 NodeFalse = senseLR

 };

 A_KartControl kControl =

rootSensor.MakeDecision();

 m_Acceleration = kControl.AccelValue;

 m_Steering = kControl.SteerValue;

END

Figure 10. Pseudocode for decision tree

3. RESULTS AND DISCUSSION

The developed AI of NPC will be tested by using

black box dan white box. FPS test, lap time test, and

driving test will be used as well.

3.1. BLACK BOX TEST

Black box test is a software test method which is

done without looking at inner structure, design, or

implementation of an application. This test aims to

know the validity of all designed behaviors with their

implementation. Table 2 shows black box test result.

Table 2. Black box test result

No Test Case Expected Result Status

1. NPC can accelerate
NPC is expected to
accelerate

Valid

2. NPC can brake NPC is expected to brake Valid

3. NPC can turn left
NPC is expected to turn

left
Valid

4. NPC can turn right
NPC is expected to turn

right
Valid

5.

NPC can look at

front to check for
kart

NPC is expected to look at
front to check for kart

Valid

6.
NPC can look at
front left to check

for kart

NPC is expected to look at

front left to check for kart
Valid

7.

NPC can look at

front right to check

for kart

NPC is expected to look at

front right to check for kart
Valid

8.
NPC can look at left

to check for wall

NPC is expected to look at

left to check for wall
Valid

Fountain of Informatics Journal Volume 6, No. 2, November 2021 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

56

No Test Case Expected Result Status

9.
NPC can look at
right to check for

wall

NPC is expected to look at
right to check for wall

Valid

Based on the validity test of designed and

implemented behaviors by using black box, NPC could

do all of its expected behaviors, that is: NPC can

accelerate, brake, turn left, turn right, look at front to

check for kart, look at front left to check for kart, look

at front right to check for kart, look at left to check for

wall, and look at right to check for wall.

3.2. WHITE BOX TEST

White box test is done by testing the

implemented pseudocode. This test will use basis path

testing. Basis path testing begins with the pseudocode

modeled into flow graph which has a collection of node

and edge. Node represents process done in a function.

As for edge, it represents the relation between nodes in

a flow graph. From the created flow graph, the

calculation of cyclomatic complexity can be done by

using Equation (1), (2), and (3) [13].

RGV =)((1)

2)(+−= NEGV (2)

1)(+= PGV (3)

where,

𝑉(𝐺) = cyclomatic complexity

𝑅 = total regions

𝐸 = total edges

𝑁 = total nodes

𝑃 = total predicate nodes

Lastly, determine the independent paths based

on the paths available in flow graph. Each independent

path then will be tested.

3.2.1. WHITE BOX TEST FOR WAYPOINT

SYSTEM

Pseudocode from waypoint system (Figure 3)

will be modeled into flow graph, its complexity

cyclomatic calculated, and its independent paths

determined. Figure 11 shows flow graph of waypoint

system.

Based on Figure 11, the complexity cyclomatic

can be calculated with Equation (1), (2), and (3) as

follows.

Cyclomatic Complexity:
𝑉(𝐺) = 𝑅

 = 7

𝑉(𝐺) = 𝐸 − 𝑁 + 2

 = 29 − 24 + 2

 = 5 + 2

 = 7

𝑉(𝐺) = 𝑃 + 1

 = 6 + 1

 = 7

From the calculated complexity cyclomatic,

total test which must be done to ensure all codes in

pseudocode is run at least once is 7 times.

Figure 11. Flow graph of waypoint system

The following are 7 independent paths obtained

based on the complexity cyclomatic result.

Independent Path:

Path #1: 1–2–3–4–5–6–7–8–13–14–15–16–17–20–

21–22–23–24

Path #2: 1–2–3–4–5–6–7–9–10–13–14–15–16–17–

20–21–22–23–24

Path #3: 1–2–3–4–5–6–7–9–11–12–13–14–15–16–

17–20–21–22–23–24

Path #4: 1–2–3–4–5–6–7–8–13–14–15–16–18–19–

20–21–22–23–24

Path #5: 1–2–3–4–5–6–7–9–10–13–14–15–16–18–

19–20–21–22–23–24

Path #6: 1–2–3–4–5–6–7–9–11–12–13–14–15–16–

18–19–20–21–22–23–24

Path #7: 1–2–3–4–5–6–14–15–22–23–5–6–14–15–

22–23–24

Table 3 shows white box test result for waypoint

system with test cases based on independent paths.

Table 3. White box test result for waypoint system

Path

Test Case Expected Result Status

1.

Current waypoint is on left

side; NPC is close to it; it

is last in the list so it goes
back to first waypoint; and

player or NPC reached

finish line on last lap

NPC is expected to

turn left when

heading to last
waypoint in the list

then proceed to

head to first one in

the list

Valid

Fountain of Informatics Journal Volume 6, No. 2, November 2021 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

57

Path

Test Case Expected Result Status

2.

Current waypoint is on

right side; NPC is close to

it; it is last in the list so it

goes back to first
waypoint; and player or

NPC reached finish line on

last lap

NPC is expected to

turn right when

heading to last

waypoint in the list
then proceed to

head to first one in

the list

Valid

3.

Current waypoint is in

neither side; NPC is close

to it; it is last in the list so
it goes back to first

waypoint; and player or

NPC reached finish line on

last lap

NPC is expected to

not turn when

heading to last
waypoint in the list

then proceed to

head to first one in

the list

Valid

4.

Current waypoint is on left
side; NPC is close to it; it

is not last in the list so it

goes to next waypoint; and

player or NPC reached
finish line on last lap

NPC is expected to

turn left when
heading to

waypoint other

than the last one in

the list then
proceed to head to

next one in the list

Valid

5.

Current waypoint is on

right side; NPC is close to

it; it is not last in the list so
it goes to next waypoint;

and player or NPC reached

finish line on last lap

NPC is expected to

turn right when

heading to

waypoint other
than the last one in

the list then

proceed to head to

next one in the list

Valid

6.

Current waypoint is in
neither side; NPC is close

to it; it is not last in the list

so it goes to next

waypoint; and player or
NPC reached finish line on

last lap

NPC is expected to

not turn when
heading to

waypoint other

than the last one in

the list then
proceed to head to

next one in the list

Valid

7.

Current waypoint does not

exist; NPC is not close to

it; no waypoint means no

list; and player or NPC has
not reached finish line on

last lap

NPC is expected to

do nothing
Valid

3.2.2. WHITE BOX TEST FOR RAYCASTING

Flow graph of raycasting based on Figure 6 is

shown in Figure 12. Based on Figure 12, the complexity

cyclomatic can be calculated with Equation (1), (2), and

(3) as follows.

Cyclomatic Complexity:
𝑉(𝐺) = 𝑅

 = 9

𝑉(𝐺) = 𝐸 − 𝑁 + 2

 = 43 − 36 + 2

 = 7 + 2

 = 9

𝑉(𝐺) = 𝑃 + 1

 = 8 + 1

 = 9

From the calculated complexity cyclomatic,

total test which must be done to ensure all codes in

pseudocode is run at least once is 9 times.

Gambar 12. Flow graph pada raycasting

The following are 9 independent paths obtained

based on the complexity cyclomatic result.

Independent Path:

Path #1: 1–2–3–4–5–6–7–8–9–10–11–14–21–34–35–

36

Path #2: 1–2–3–4–5–6–7–8–9–10–12–13–14–21–34–

35–36

Path #3: 1–2–3–4–5–6–7–8–9–15–16–17–20–21–34–

35–36

Path #4: 1–2–3–4–5–6–7–8–9–15–16–18–19–20–21–

34–35–36

Path #5: 1–2–3–4–5–6–7–8–22–23–24–25–28–33–

34–35–36

Path #6: 1–2–3–4–5–6–7–8–22–23–24–26–27–28–

33–34–35–36

Path #7: 1–2–3–4–5–6–7–8–22–23–29–30–31–32–

33–34–35–36

Path #8: 1–2–3–4–5–6–7–8–22–23–29–30–32–33–

34–35–36

Path #9: 1–2–3–4–5–6–7–8–9–10–11–14–21–34–35–

7–8–9–10–11–14–21–34–35–36

Fountain of Informatics Journal Volume 6, No. 2, November 2021 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

58

Table 4 shows white box test result for

raycasting with test cases based on independent paths.

Table 4. White box test result for raycasting

Path

Test Case

Expected

Result
Status

1.

Raycast detects kart in front (F),

front left (FL), and front right
(FR); and player or NPC reached

finish line on last lap

NPC is

expected to
brake

Valid

2.

Raycast detects kart in front (F),

front left (FL), and not in front

right (FR); and player or NPC

reached finish line on last lap

NPC is

expected to

turn right

Valid

3.

Raycast detects kart in front (F),

front right (FR), and not in front
left (FL); and player or NPC

reached finish line on last lap

NPC is

expected to
turn left

Valid

4.

Raycast detects kart in front (F),

and neither in front left (FL) and

front right (FR); and player or

NPC reached finish line on last
lap

NPC is

expected to

turn left or

right

Valid

5.

Raycast does not detect kart in
front (F); and detects wall on left

side (L) and right side (R); and

player or NPC reached finish

line on last lap

NPC is

expected to

not turn

Valid

6.

Raycast does not detect kart in

front (F); and detects wall on left
side (L) and not on right side

(R); and player or NPC reached

finish line on last lap

NPC is
expected to

turn right

Valid

7.

Raycast does not detect kart in

front (F); and detects wall on

right side (R) and not on left side
(L); and player or NPC reached

finish line on last lap

NPC is

expected to
turn left

Valid

8.

Raycast does not detect kart in

front (F); and does not detect

wall on either left side (L) and

right side (R); and player or NPC
reached finish line on last lap

NPC is

expected to

do nothing

Valid

9.

Raycast detects kart in front (F),
front left (FL), and front right

(FR); and player or NPC has not

reached finish line on last lap

NPC is

expected to

not turn

Valid

3.2.3. WHITE BOX TEST FOR DECISION TREE

Figure 13 shows flow graph of decision tree

based on Figure 10. The complexity cyclomatic can be

calculated with Equation (1), (2), and (3) as follows.

Cyclomatic Complexity:
𝑉(𝐺) = 𝑅

 = 1

𝑉(𝐺) = 𝐸 − 𝑁 + 2

 = 17 − 18 + 2

 = (−1) + 2

 = 1

𝑉(𝐺) = 𝑃 + 1

 = 0 + 1

 = 1

From the calculated complexity cyclomatic,

total test which must be done to ensure all codes in

pseudocode is run at least once is 1 time.

Figure 13. Flow graph of decision tree

The following are 1 independent path obtained

based on the complexity cyclomatic result.

Independent Path:

Path #1: 1–2–3–4–5–6–7–8–9–10–11–12–13–14–15–

16–17–18

Table 5 shows white box test result for decision

tree with test cases based on independent paths.

Table 5. White box test result for decision tree

Path # Test Case Expected Result Status

1.

Initialize decision tree of
waypoint system and

raycasting then proceed to

execute both and the result

is used for determining
what the NPC will do

NPC is expected
to accelerate or

brake and turn

based on the

result of the two
decision tree

Valid

Based on the white box test results, each created test

cases have been in accordance with tested total paths

and gave the expected results. Therefore, it can be

concluded that NPC have met all of its designed

behavior.

3.3. FPS TEST

FPS (frame per second) test aims to determine the

game performance based on how many NPCs is added

in Micro-Game Karting. It is done in phases starting

with placing a few to many NPCs, then writing down

the game performance by looking at the displayed FPS

value. The system specification used is Intel Core i7

processor, 4096MB RAM, NVIDIA GeForce GT

635M 2GB graphic card, Windows 7 Ultimate SP1 64-

bit operating system, and Unity 3D version 2018.4.6f1

64-bit. Table 6 and Figure 15 shows FPS test result and

its chart.

Fountain of Informatics Journal Volume 6, No. 2, November 2021 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

59

Table 6. FPS test result

Test # Total NPC FPS

1. 3 46,0

2. 5 45,8

3. 7 45,5

4. 9 45,3

5. 11 45,0

Figure 15. FPS test result chart

Based on FPS test result, the game performance in

processing a lot of NPCs only suffers a tiny decrease, -

0,3 to -0,2 FPS for every additon of 2 NPCs. Therefore,

it can be concluded that the game performance when

there are a lot of NPCs is still in good condition.

3.4. LAP TIME TEST

The aim of this test is to determine the lap time

performance of the developed AI of NPC with

proposed method compared to NPC with machine

learning method in the new version of Micro-Game

Karting with its name changed to Karting Microgame.

Table 7 shows the result of the race in mm:ss.ms format

for 10 laps with top speed of 10 m/s (36 km/h) for both

of NPC. The first lap time is the highest due to both of

them started with speed of 0 at the start line and have

only begun to accelerate to top speed. The developed

NPC won over machine learned NPC in all 10 laps with

total time difference of 7.21 seconds and average time

difference of 0.70 seconds. While the race is in

progress, the ML NPC erratically steered a bit to left

and right most of the time even in the straight path when

it was not needed causing it to lost its velocity. The

developed NPC only steered when the current waypoint

is not in front of it resulting in maintained velocity,

especially in straight path. This is the most likely cause

of developed NPC winning over ML NPC. Figure 15

shows track for lap time testing.

Table 7. NPC lap time

Lap # Developed NPC ML NPC

1. 00:28.26 00:29.03

2. 00:27.98 00:28.80

3. 00:28.02 00:28.48

4. 00:28.02 00:28.75

5. 00:27.99 00:28.76

6. 00:28.00 00:28.67

7. 00:27.96 00:28.77

8. 00:28.02 00:28.65

9. 00:28.02 00:28.74

Lap # Developed NPC ML NPC

10. 00:27.98 00:28.81

Total 04:40.25 04:47.46

Average 00:28.00 00:28.70

Figure 14. Track for Lap Time Test

3.5. DRIVING TEST

For this test, NPC races by itself for 10 laps with

top speed of 20 m/s (72 km/h), then the movement path

used by NPC is drawn as shown in Figure 14. When

NPC is turning, NPC oftens slightly touch the wall,

sometimes crash, and seldoms do not touch the wall in

8 circled areas as shown in Figure 15. The most likely

cause for this is NPC could not measure the appropriate

speed to be used yet when turning in the corner. Even

so, NPC could finish all laps fast enough so it can still

provide adequate difficulty for players.

Figure 15. Movement path used by NPC

4. CONCLUSION

The proposed methods, pathfinding and decision

tree, have been implemented and as shown in the result

of black box and white box testing, NPC could do all of

its designed behaviors. The result of FPS testing

showed the game performance is still in good condition,

it only suffers 0,2-0,3 FPS decrease for every addition

of 2 NPCs. The result of lap time test showed the

developed NPC is a bit faster than NPC with machine

learning. Lastly, the result of driving test showed even

though the NPC performance is slightly bad when

turning in the corner, it could still provide an adequate

challenge for players. From all test results, it can be

concluded the NPC can act as opponents for players in

Micro-Game Karting without causing frustation on

them because of low FPS value which leads to

increased fun factor for them. In addition, the NPC

could prove to be a good challenge for average players.

With the NPC acting as opponent, then Micro-Game

46

45,8

45,5

45,3

45

44,9

45,1

45,3

45,5

45,7

45,9

46,1

3 5 7 9 11

Fr
am

e
 P

er
 S

ec
o

n
d

 F
P

S

Total Non-Player Character (NPC)

Fountain of Informatics Journal Volume 6, No. 2, November 2021 ISSN: 2541-4313 (Print) / 2548-5113 (Online)

60

Karting can be played in player versus enemy (PvE)

mode.

Even so, pathfinding with waypoint system is

only effective if the track path is static. For dynamic

track path, another method can be added to complement

it or changing it to another more effecive method. With

raycasting, NPC have been able to avoid another karts

and walls in track courses. However, the raycast

detection reach is only a straight line. For larger

detection reach, it is better to use another more effective

method. Decision tree have been effective in serving as

the decision maker for NPC. This is because conditions

used here is not that many. For the case of many

conditions, another more effective method should be

used.

5. REFERENCES

[1] J. Sirani, “Top 10 Best-Selling Video Games of

All Time,” IGN, 2019.

https://www.ign.com/articles/2019/04/19/top-

10-best-selling-video-games-of-all-time

(accessed Aug. 30, 2019).

[2] E. Jones, “All Upcoming Racing Games of

2019 | Heavy.com,” 2019.

https://heavy.com/games/2019/01/top-best-

upcoming-racing-games-2019/ (accessed Aug.

30, 2019).

[3] D. Sirlin, “Playing To Win – Becoming the

Champion: Introduction — Sirlin.Net — Game

Design,” 2000. http://www.sirlin.net/ptw-

book/introduction (accessed Jul. 10, 2020).

[4] I. Millington and J. Funge, Artificial

Intelligence for Games, 2nd ed. Burlington:

Morgan Kaufmann, 2009.

[5] M. T. Chan, C. W. Chan, and C. Gelowitz,

“Development of a Car Racing Simulator

Game Using Artificial Intelligence

Techniques,” Int. J. Comput. Games Technol.,

vol. 2015, 2015, doi: 10.1155/2015/839721.

[6] J. Glover, “Learn and Understand Raycasting

in Unity3D – Zenva | GameDev Academy,”

2017, Accessed: Oct. 03, 2019. [Online].

Available: https://gamedevacademy.org/learn-

and-understand-raycasting-in-unity3d/.

[7] T. B. Yoon, K. H. Park, J. H. Lee, and K. M.

Lee, “User Adaptive Game Characters Using

Decision Trees and FSMs,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol.

4496 LNAI, pp. 972–981, 2007.

[8] L. D. Pyeatt, “Reinforcement Learning with

Decision Trees,” IASTED Int. Multi-

Conference Appl. Informatics, vol. 21, pp. 26–

31, 2003.

[9] M. Claypool, K. Claypool, and F. Damaa, “The

Effects of Frame Rate and Resolution on Users

Playing First Person Shooter Games,”

Multimed. Comput. Netw. 2006, vol. 6071, p.

607101, 2006, doi: 10.1117/12.648609.

[10] C. Bennett and D. V. Sagmiller, Unity AI

Programming Essentials, 1st ed. Birmingham:

Packt Publishing, 2014.

[11] R. Graham, H. McCabe, and S. Sheridan,

“Pathfinding in Computer Games,” ITB J., vol.

4, no. 2, 2003, doi: 10.21427/D7ZQ9J.

[12] M. Buckland, Programming Game AI by

Example. Texas: Wordware Publishing, Inc.,

2005.

[13] R. S. Pressman, Software Engineering: A

Practitioner’s Approach, 5th ed. New York:

McGraw-Hill, 2001.

