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Abstract  
 

Water is essential for all living organisms, yet only a small fraction is fresh and suitable for 

consumption. The limited availability of freshwater sources, worsened by pollution, overuse, and 

climate change, underscores the urgent need for sustainable water management. Traditional water 

quality identification methods are labour-intensive, slow, and costly. Water quality identification often 

struggles with data quality, imbalanced datasets, and model interpretability. These challenges lead to 

inaccuracies, especially in detecting minority classes, which is crucial for identifying pollution. This 

research explores machine learning (ML) techniques to address the limitations of water quality 

classification by integrating ensemble learning using LightGBM and hybrid Resampling using SMOTE-

ENN. Ensemble learning techniques improve accuracy and robustness by aggregating the strengths of 

multiple models, effectively handling imbalanced data and reducing overfitting. Hybrid Resampling 

techniques enhance model sensitivity by generating synthetic minority-class samples and refining 

datasets through noise reduction. Together, these integrations provide a more reliable framework for 

water quality identification, enabling timely and accurate. This innovative method offers a robust 

solution for addressing data imbalance and overfitting, ensuring more effective detection of polluted 

conditions. This study highlights the importance of advanced ML techniques in improving water quality 

tasks and underscores LightGBM's effectiveness in handling imbalanced data post-SMOTE-ENN 

application. This method is known for its superior performance, achieving the highest performance 

evaluation metrics in water quality classification with accuracy, F1-Score, and increasing the recall 

value by 3% with values of 94.50%, 94.76% and 93.00%, respectively. 

  

Keywords: Water Quality, Machine Learning, Imbalanced Data, LightGBM, SMOTE-ENN, Ensemble 

Learning, Hybrid Resampling. 

 

Abstrak 
 

Air sangat penting bagi semua organisme hidup, namun hanya sebagian kecil yang segar dan layak 

untuk dikonsumsi. Terbatasnya ketersediaan sumber air bersih, yang diperburuk oleh polusi, 

penggunaan berlebihan, dan perubahan iklim, menggarisbawahi kebutuhan mendesak akan 

pengelolaan air berkelanjutan. Metode identifikasi kualitas air tradisional memerlukan banyak tenaga 

kerja, lambat, dan mahal. Identifikasi kualitas air sering kali bermasalah dengan kualitas data, 

kumpulan data yang tidak seimbang, dan kemampuan interpretasi model. Tantangan-tantangan ini 

menyebabkan ketidakakuratan, terutama dalam mendeteksi kelompok minoritas, yang sangat penting 

dalam mengidentifikasi polusi. Penelitian ini mengeksplorasi teknik pembelajaran mesin (ML) untuk 

mengatasi keterbatasan klasifikasi kualitas air dengan mengintegrasikan pembelajaran ensembel 

menggunakan LightGBM dan pengambilan sampel hybrid menggunakan SMOTE-ENN. Teknik 

pembelajaran ensemble meningkatkan akurasi dan ketahanan dengan menggabungkan kekuatan 

beberapa model, menangani data yang tidak seimbang secara efektif, dan mengurangi overfitting. 

Teknik pengambilan sampel hibrid meningkatkan sensitivitas model dengan menghasilkan sampel kelas 

minoritas sintetik dan menyempurnakan kumpulan data melalui pengurangan noise. Bersama-sama, 

integrasi ini memberikan kerangka kerja yang lebih andal untuk identifikasi kualitas air, sehingga 

memungkinkan dilakukannya identifikasi secara tepat waktu dan akurat. Metode inovatif ini 

menawarkan solusi yang kuat untuk mengatasi ketidakseimbangan dan overfitting data, sehingga 

memastikan deteksi kondisi tercemar dengan lebih efektif. Studi ini menyoroti pentingnya teknik ML 

tingkat lanjut dalam meningkatkan tugas kualitas air dan menggarisbawahi efektivitas LightGBM 

dalam menangani data yang tidak seimbang pasca penerapan SMOTE-ENN. Metode ini dikenal dengan 
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kinerjanya yang unggul, mencapai metrik evaluasi kinerja tertinggi dalam klasifikasi kualitas air 

dengan akurasi, F1-Score, dan meningkatkan nilai recall sebesar 3% dengan nilai masing-masing 

94,50%, 94,76% dan 93,00%. 

 

Kata kunci: Kualitas Air, Pembelajaran Mesin, Data Ketidakseimbangan, LightGBM, SMOTE-ENN, 

Pembelajaran Ensemble, Pengambilan Sampel Hibrid. 

 

 

1. INTRODUCTION 

Water covers over two-thirds of Earth's surface, 

making it a crucial resource for all living organisms. 

Despite this apparent abundance, only a small fraction 

is fresh and safe for consumption. Freshwater sources, 

like rivers, lakes, and aquifers, are limited and unevenly 

distributed, leading to insufficiency in many regions. 

Pollution, overuse, and climate change further reduce 

the availability of clean water, making sustainable 

management vital for future needs [1]. Water is an 

essential natural resource importance for humans. It 

supports basic physiological needs and is essential for 

sanitation, agriculture, and industry. Socially, it 

influences public health, cultural practices, and 

community well-being. Without acceptable water 

supply, human survival and progress are severely 

threatened, leading to potential conflicts and 

humanitarian crises. Currently, over 1.1 billion people 

lack access to clean drinking water, which poses 

significant health risks and affects daily life [2]. Water 

quality in urban environments is influenced by various 

factors, including industrial discharge, sewage, 

stormwater runoff, and pollution from vehicles. These 

contribute to contaminants such as heavy metals, 

chemicals, and pathogens entering water sources. 

Effective management requires monitoring key 

indicators like contaminants like heavy metals, and 

microbial content [3]. Advanced technologies, such as 

machine learning models, are increasingly used to 

assess and predict water quality, enabling timely 

interventions to protect public health and ecosystems 

[4]. Assessing Water Quality (WQ) traditionally 

involves labor-intensive processes like manual 

sampling and laboratory analysis, which are slow, 

costly, and may not provide real-time insights needed 

for timely interventions [5]. Intelligent systems 

leveraging Machine Learning (ML) as part of the 

Artificial Intelligence (AI) scope offer a promising 

alternative. ML techniques enable systems to 

autonomously learn patterns from WQ data, enhancing 

the accuracy and efficiency of identifications [6]. 

Several machine learning algorithms used in 

water quality identification research include Random 

Forest (RF), K-Nearest Neighbors (KNN), Decision 

Tree (DT) and Support Vector Machine (SVM) [7][8]. 

These algorithms classify water quality data based on 

parameters such as pH, dissolved oxygen, and turbidity 

levels, etc., [9] and based on contaminants like heavy 

metals and microbial content such as aluminium, 

barium, bacteria, nitrates, uranium, etc., [10]. In the 

previous research conducted by [11] using comparison 

various classification algorithms in water quality 

classification task. The Random Forest model achieved 

the highest performance metrics. Specifically, an 

accuracy of 91.00%, precision was 93.00%, recall was 

92.00%, and the F1-score, which balances precision 

and recall, was 91.00% value. The research conducted 

by [12] shows perfect recall of 100.00% indicates that 

the Stochastic Gradient Descent (SGD) method is 

correctly identifying all the positive instances. 

However, F1-score of 58.8% suggests that the precision 

is quite low. This inconsistency usually points to a high 

number of false positives, which can be a sign of an 

imbalance dataset problem. The research conducted by 

[13] using XGBoost resulted in an F1-score of 60.00% 

and a recall of 65.00%. This indicates that the model 

has moderate effectiveness in identifying positive 

instances but struggles with precision. The use of these 

algorithms aids in effectively detecting pollution and 

predicting changes in water quality. Machine learning 

methods appearance with several limitations that 

impact their effectiveness. Its often require large, well-

labeled datasets, which can be difficult to obtain [14]. 

Scalability is another issue, as these models struggle to 

efficiently process very large datasets. Its also perform 

poorly with imbalanced data, often favoring the 

majority class, which can skew results. These 

challenges highlight the need for more approaches to 

improve performance and applicability. 

Water quality classification often deals with 

imbalanced data, where certain quality classes are 

underrepresented compared to others [15]. This 

imbalance poses challenges for machine learning 

models, which may become biased towards predicting 

the majority class [16]. Techniques such as resampling 

or employing algorithms designed ensemble methods, 

can help address this issue. These strategies ensure that 

models are better equipped to accurately identify 

minority classes, which are often critical for detecting 

pollution or unsafe conditions. In imbalanced data 

scenarios like confusion matrix, provides a detailed 

breakdown of model predictions is crucial for 

understanding, especially when sensitivity (recall) is 

important. Sensitivity, calculated as the ratio of true 

positives to the sum of true positives and false 

negatives, measures the model's ability to correctly 

identify positive cases. This is particularly vital when 

the minority class is of high importance, such as in 

medical diagnoses or fraud detection, where missing 

positive instances can have significant consequences. 

Unlike accuracy, which can be skewed by the majority 

class, sensitivity ensures that the model's focus is on 

capturing the critical minority class [17]. Improving 

performance identification can be achieved by 
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combining ensemble learning with hybrid Resampling 

techniques [18].  

The LightGBM its a powerful ensemble 

learning technique, superior in boosting model 

performance through its innovative approach to 

gradient boosting. It uses multiple weak learners 

(decision trees) combined to create a strong predictive 

model [19]. One of its key strengths is speed, as it 

employs histogram-based algorithms to enhance 

computational efficiency and reduce memory usage, 

making it faster than traditional boosting methods [20]. 

LightGBM introduces innovations like leaf-wise tree 

growth, which allows for optimal splits, and Gradient-

based One-Side Resampling (GOSS), which reduces 

the need for data instances in each iteration. These 

innovations contribute to LightGBM's high 

performance, providing both speed and accuracy, 

enhance classification performance by aggregating 

predictions from multiple models, thereby increasing 

accuracy and robustness [21]. On the other hand, the 

hybrid Resampling techniques like SMOTE combined 

with Edited Nearest Neighbors (SMOTE-ENN), 

address class imbalance by generating synthetic 

samples for minority classes and removing noise, 

improving model sensitivity (recall) [22]. Together, 

these approaches enhance the ability to detect and 

predict water quality issues, ensuring more reliable and 

accurate identifications, especially in datasets with 

imbalanced class distributions. 

Based on research on water quality conducted is 

urgent due to the increasing threats of pollution, 

overuse, and climate change, which reduce the 

availability of clean water. The research gap lies in 

developing real-time, accurate methods for assessing 

water quality, as traditional techniques are slow, costly, 

and labour-intensive. The proposed research aims to 

innovate by leveraging ensemble machine learning, 

specifically using LightGBM and SMOTE-ENN, to 

improve water quality identification. LightGBM 

provides a powerful ensemble learning framework that 

enhances model accuracy and efficiency, while 

SMOTE-ENN addresses data imbalance issues, 

ensuring better detection of minority classes crucial for 

identifying pollution and hazardous conditions. This 

combination offers a more reliable and timely approach 

to water quality identification, enabling proactive 

interventions and sustainability. 

 
2. RESEARCH METHOD 

The research method follows a structured 

process beginning with the first step is data collection 

from relevant sources to ensure comprehensive 

coverage. In the second step, data preprocessing is 

conducted, which includes cleaning to remove noise 

and inconsistencies, handling missing values through 

imputation or removal, and normalizing the data to 

maintain consistency. After preprocessing, the dataset 

is split into training and testing subsets. To address 

class imbalance, hybrid resampling techniques like 

SMOTE-ENN are applied to the training data, 

enhancing the model's ability to generalize across 

classes. The study employs ensemble machine learning, 

specifically LightGBM combined with SMOTE-ENN, 

to train models on the balanced data. Model 

performance is then evaluated using the testing data, 

with metrics such as accuracy, precision, recall, and F1-

score used to determine the most effective approach. 

This structured process ensures thorough analysis and 

reliable insights, leveraging the strengths of ensemble 

learning to achieve superior performance in handling 

imbalanced datasets. Based on the explanation that has 

been presented previously, the flow of the research 

method can be illustrated through the diagram in Figure 

1 as follows. 

 
Figure 1. Research Method Flow 

A. Data Collection 

Data collection for water quality identification 

involves gathering samples data from water sources to 

assess their safety and quality [23]. This process 

typically includes measuring physical, chemical, and 

contaminants like heavy metals, and microbial content. 

Accurate data collection is crucial for identifying 

pollutants and assessing safety standards. 

Table 1. Water Quality Data 
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1.65 2.85 0.20 ... 16.08 0.02 1 

2.32 3.31 0.65 ... 2.01 0.05 1 

1.36 2.96 0.71 ... 1.41 0.05 1 

0.92 0.20 0.13 ... 6.74 0.02 1 

1.01 0.58 0.05 ... 14.16 0.01 0 

... ... ... ... ... ... ... 

0.05 1.95 0.00 ... 14.29 0.03 1 

0.05 0.59 0.00 ... 10.27 0.08 1 

0.09 0.61 0.00 ... 15.92 0.05 1 

0.01 2.00 0.00 ... 0.00 0.00 1 

0.04 0.70 0.00 ... 15.92 0.05 1 

Table 1. represent of water quality data, 

indicates a clear distinction between polluted and 



Fountain of Informatics Journal Volume 9, No. 2, November 2024 ISSN: 2541-4313 (Print) / 2548-5113 (Online) 
 

 

32 

neutral (safe) water based on several features. The data 

includes features such as aluminium, barium, bacteria, 

nitrates, uranium, etc., with a classification label 

indicating whether the water is "Polluted" (is_safe = 1) 

or "Neutral or Safe" (is_safe = 0). Polluted water 

samples generally have higher concentrations of 

Aluminium, Barium, Bacteria, and Nitrates, while 

Uranium levels do not significantly vary between 

classes. This pattern suggests that Aluminium, Barium, 

Bacteria, and Nitrates are more indicative of water 

pollution, making them critical features for 

classification models. However, the dataset also 

reflects a challenge of imbalanced classes, as polluted 

samples (is_safe = 1) are more frequent than neutral 

samples (is_safe = 0). This imbalance can affect the 

performance of classification models, making it 

essential to use techniques like Resampling or 

specialized algorithms to ensure accurate predictions. 

Variability in feature values within each class suggests 

the need for robust models that can handle such 

diversity in water quality measurements. 

 
Figure 2. Comparison Water Quality Data 

The Figure 2 illustrates a significant imbalance 

between the number of samples classified as "Safe 

Water" with value of 7,084 and "Polluted Water" with 

value of 912. This disparity presents a challenge for 

modeling, as it can lead to biased predictions favoring 

the majority class, "Safe Water." To counteract this, 

techniques like SMOTE-ENN are essential for 

balancing the training data, ensuring that models can 

accurately identify "Polluted Water" cases. The 

imbalance also means that relying solely on accuracy 

as a performance metric could be misleading, as it 

might not reflect the model's ability to detect pollutants 

effectively. Therefore, focusing on metrics like recall 

for the minority class is crucial to ensure reliable and 

unbiased model performance in water quality 

classification. 

 
Figure 3. Visualization Quality Criteria 

Figure 3 illustrates water quality criteria 

comparing "Safe" and "Not Safe" levels across various 

contaminants, such as: aluminum, barium, bacteria, 

nitrates, and uranium. The "Not Safe" category peaks 

significantly with nitrates, indicating a higher risk level 

compared to other contaminants. In contrast, 

aluminum, barium, and uranium show minimal or no 

distinction between safe and unsafe levels. The "Safe" 

category remains consistently low across all 

contaminants, highlighting potential concerns with 

water quality safety, particularly for nitrates and 

bacteria. This suggests that targeted interventions may 

be necessary to address these specific issues. 

B. Preprocessing Data 

Data preprocessing is essential for preparing a 

dataset for effective machine learning model training. 

It begins with cleaning, which involves removing noise 

and inconsistencies from the data, such as correcting 

errors and unifying different formats. This ensures the 

data is accurate and reliable. Next, handling missing 

values addresses gaps in the dataset, either by imputing 

missing values with estimates like the mean or median, 

or by removing affected records altogether to prevent 

skewed results. Finally, normalization scales the data to 

a consistent range or distribution, which helps ensure 

that all features contribute equally to the model. This 

step is crucial for algorithms that are sensitive to feature 

scale. Together, these preprocessing steps improve the 

quality of the dataset, leading to more reliable and 

accurate model performance [24]. 

C. Ensemble Learning Algorithm 

This research conducted by ensemble learning 

algorithm called LightGBM (Light Gradient Boosting 

Machine) is an efficient and scalable gradient boosting 

framework developed by Microsoft, known for its 

speed and performance. It is optimized to handle large 

datasets and high-dimensional data, making it a popular 

choice in machine learning applications. LightGBM's 

key strength lies in its speed, achieved through the use 

of histogram-based algorithms that improve 

computational efficiency and reduce memory usage. Its 

scalability allows for handling massive amounts of data 

with support for parallel learning. A notable innovation 

is its leaf-wise tree growth, which results in more 

optimal splits compared to traditional level-wise 

growth. The workflow of this method represent in 

Formula (1) as follows [21]. 

𝐹(𝑥) =  ∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1   (1) 

Where the symbol based on formula (1) represent 𝐹(𝑥) 

is the final prediction, 𝛼𝑡 is is the weight of the 𝑡 = 𝑡ℎ 

with 𝑡ℎ is number of iteration model.  ℎ𝑡(𝑥) is the 𝑡 =
𝑡ℎ weak learner (decision tree), and  𝑇 is the total 

number of trees. 

LightGBM also introduces Gradient-based One-

Side Resampling (GOSS), focuses on samples with 

large gradients which reduces data instances per 

iteration. Exclusive Feature Bundling (EFB), which 

efficiently handles high-dimensional data by reduces 

the number of features by bundling mutually exclusive 

features. These features contribute to its high 
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performance, enabling fast and accurate model training 

process [21]. Additionally, this supports various data 

types, including continuous, categorical, and missing 

values, and offers extensive customization options 

through its hyperparameters. 

D. Hybrid Resampling 

This research also conducted hybrid 

Resampling by SMOTE-ENN, which combines 

Synthetic Minority Over-Resampling Technique 

(SMOTE) with Edited Nearest Neighbors (ENN), for 

handling imbalanced data. Each component works in 

SMOTE to synthetic sample creation for each minority 

class sample, its selects 𝑘 nearest neighbors and 

generates synthetic samples along the line segments 

joining the sample and its neighbors. The workflow of 

this synthetic sample’s method represent in Formula (2) 

as follows [25]. 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝛽 ×  (𝑥𝑛𝑛 − 𝑥𝑖) (2) 

Where the symbol based on formula (2) represent, each 

component works in ENN to noise removal, removes 

samples whose class differs from the majority of its 𝑘 

nearest neighbors, reducing noise and cleaning the data. 

Then combination process to apply SMOTE to 

Generate synthetic samples for the minority class, and 

apply ENN to remove noisy samples from the 

combined data (original + synthetic). This hybrid 

approach improves model performance by balancing 

the data and enhancing sensitivity [25]. 

E. Performance Evaluation 

Confusion matrix was applied to provides a 

comprehensive performance evaluation of 

classification task [26]. The metrics are defined: True 

Positive (TP): This indicates that a water sample is 

classified as polluted, and the classifier correctly 

identifies it as polluted. True Negative (TN): This 

occurs when a water sample is classified as clean, and 

the classifier accurately predicts it to be clean. False 

Positive (FP): In this case, a clean water sample is 

incorrectly classified as polluted by the classifier. False 

Negative (FN): This represents a scenario where a 

polluted water sample is incorrectly classified as clean 

by the classifier. 

T
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a
b

e
l Not Safe 

(0) 

True Positive 

(TP) 

False Positive 

(FP) 

Safe 

(1) 

False Negative 

(FN) 

True Negative 

(TN) 
 Not Safe (0) Safe (1) 

  Predicted Label 

Figure 4. Confusion Matrix Scheme 

The Figure 4 illustrates confusion matrix 

scheme, that an accuracy is used to measures the overall 

correctness of the classifier. Precision is used to 

evaluates the proportion of correctly identified polluted 

samples among all samples classified as polluted. 

Sensitivity (recall) is used to assesses the classifier's 

ability to correctly identify polluted samples. F1-Score 

is used to the harmonic mean of precision and recall, 

providing a balance between the two, shown in Formula 

(3), (4) and (5) respectively. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   () 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑟𝑒𝑐𝑎𝑙𝑙)  =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   () 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
   () 

These metrics are essential for determining the 

effectiveness of the classification model in identifying 

water quality accurately, helping ensure safe and clean 

water management practices. 

The ROC curve was applied to visualization of 

the performance of different machine learning models 

on a binary classification task. It shows the trade-off 

between the TPR and FPR for each model at various 

classification thresholds. True positive rate (TPR), also 

known as recall, represents the proportion of actual 

positive cases that were correctly identified by the 

model. False positive rate (FPR) is the proportion of 

negative observations that were incorrectly classified as 

positive. An ideal ROC curve would be a line that goes 

straight up the left side of the ROC space and then 

across the top. This would indicate a model with 100% 

TPR and 0% FPR, which means it perfectly classified 

all positive and negative cases. 

 
3. RESULTS AND DICUSSION 

The performance of various classification 

algorithms in ensemble learning, specifically focusing 

on tree-based methods, is crucial for understanding 

their effectiveness in different scenarios. Here, we 

provide a detailed analysis of classifiers based on their 

accuracy, F1-score, and sensitivity (recall) evaluation 

metrics, highlighting their strengths and weaknesses. 

Tree-based ensemble methods, such as Random Forest, 

Gradient Boosting, and LightGBM, are often highly 

effective due to their ability to handle complex datasets 

and model interactions between features. 

Table 2. Performance Evaluation Research Results 

Algorithm 
Accuracy 

(%) 

F1-Score 

(%) 

Sensitivity 

Recall (%) 

Random 

Forest 
96.06 95.80 85.32 

AdaBoost 92.75 92.12 76.36 

Gradient 

Boosting 
95.88 95.64 85.64 

Bagging 96.88 96.75 89.21 

Extra 

Trees 
93.13 92.29 75.07 

XGBoost 96.88 96.79 90.29 

LightGBM 97.00 96.92 90.57 

The Table 2 represent Random Forest classifier 

demonstrates robust performance with an accuracy of 

96.06% and an F1-Score of 95.80%, although its recall 

of 85.32% suggests it is slightly less sensitive to 

positive instances. AdaBoost, with an accuracy of 

92.75% and an F1-Score of 92.12%, performs well but 

has a lower recall of 76.36%, indicating it might not be 

the best choice for highly imbalanced datasets. 

Gradient Boosting also shows strong performance with 

an accuracy of 95.88% and an F1-Score of 95.64%, 
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coupled with a higher recall of 85.64% compared to 

AdaBoost. Bagging achieves the highest accuracy 

among the classifiers at 96.88%, along with an F1-

Score of 96.75% and a recall of 89.21%, highlighting 

its balanced performance. Extra Trees, with an 

accuracy of 93.13% and an F1-Score of 92.29%, has the 

lowest recall of 75.07% among tree-based methods, 

indicating a potential weakness in identifying positive 

instances. The XGBoost, achieving an accuracy of 

96.88% and an F1-Score of 96.79%, along with a high 

recall of 90.29%, shows its effectiveness in both 

balanced and imbalanced datasets. Lastly, LightGBM 

outperforms all with an accuracy of 97.00%, an F1-

Score of 96.92%, and the highest recall of 90.57%, 

making it the most reliable choice across different 

metrics. 

In summary, while Bagging and LightGBM 

exhibit the highest accuracy, classifiers like XGBoost 

and LightGBM also maintain high F1-Scores and recall 

values, making them more suitable for imbalanced 

datasets. The analysis highlights the importance of 

selecting classifiers based on specific performance 

metrics adapted to the application's needs. 

 
Figure 5. Confusion Matrix LightGBM 

The confusion matrix represent in Figure 5 is the 

performance of the model result from a LightGBM on 

a classification task. The rows represent the actual 

labels, and the columns represent the predicted labels. 

The diagonal cells show the number of correct 

predictions, and the off-diagonal cells show the number 

of incorrect predictions. The model shows is not very 

good at identifying positive cases (those with a label of 

"0"). It has high precision (most of the times it predicted 

a label of "0" it was correct), but very low recall (it only 

identified a small fraction of the actual positive cases). 

This suggests that the model might be biased towards 

predicting the negative class. 

 
Figure 6. ROC Curve Comparison Results 

The ROC curve in Figure 6 is a visualization of 

the performance of different machine learning models. 

Random Forest (AUC 0.90), this model’s performance 

is good, but not quite as good as the models mentioned 

above. It has an AUC of 0.90. XGBoost (AUC 0.93), 

this model’s ROC curve departs from the diagonal line 

sooner than most of the other models, which indicates 

it has a good balance between TPR and FPR. It has an 

Area Under the Curve (AUC) of 0.93, which is a good 

score. LightGBM (AUC 0.99), this model’s ROC curve 

comes closest to the ideal ROC curve, which means it 

has the best performance among the models shown, that 

has an AUC of 0.99, which is a very good score. 

 
Figure 7. Comparison Performance Results 

Figure 7 represent the comparison of 

performance evaluation in each experiment algorithm. 

Overall, the chart shows that the LightGBM algorithm 

has the highest accuracy 97.00%, F1-score 96.92%, and 

sensitivity 90.57 % compared to the other algorithms in 

this experiment. This suggests that the LightGBM 

model performed the best at correctly classifying in this 

research experiment. 

The application of SMOTE-ENN, a hybrid 

approach combining Synthetic Minority Over-

Resampling Technique (SMOTE) and Edited Nearest 

Neighbors (ENN) represent in Table 3, aims to enhance 

the sensitivity of classifiers by addressing class 

imbalance. This analysis evaluates the performance of 

various classifiers post-Resampling. 

Table 3. Performance Evaluation Research Results 

with Hybrid Resampling Method (SMOTE_ENN) 

Algorithm 
Accuracy 

(%) 

F1-Score 

(%) 

Sensitivity 

Recall (%) 

Random 

Forest 

94.25 94.46 90.93 

AdaBoost 87.63 88.72 83.71 

Gradient 

Boosting 

91.19 91.95 91.54 

Bagging 93.63 94.03 93.14 

Extra 

Trees 

90.81 91.33 85.75 

XGBoost 94.13 94.37 91.29 

LightGBM 94.50 94.76 93.00 

Table 3 represents performance evaluation 

results, showing that the Random Forest demonstrates 

superior performance, achieving an accuracy of 

94.25% and an F1-Score of 94.46%, with a recall of 

90.93%, reflecting its ability to effectively capture 
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minority class patterns. AdaBoost exhibits an accuracy 

of 87.63% and an F1-Score of 88.72%, with a recall of 

83.71%. This suggests that while it benefits from 

resampling, it may still struggle with highly imbalanced 

scenarios. Gradient Boosting achieves an accuracy of 

91.19% and a strong F1-Score of 91.95%, coupled with 

a recall of 91.54%, indicating robust performance in 

detecting positive instances. Bagging presents 

impressive results with an accuracy of 93.63% and an 

F1-Score of 94.03%, along with a recall of 93.14%, 

demonstrating a well-rounded ability to handle 

imbalanced data. Extra Trees, with an accuracy of 

90.81% and an F1-Score of 91.33%, has a recall of 

85.75%, showing moderate sensitivity improvements. 

The XGBoost, with an accuracy of 94.13% and an F1-

Score of 94.37%, achieves a recall of 91.29%, 

reflecting strong performance in sensitivity. LightGBM 

emerges as the top performer with an accuracy of 

94.50% and an F1-Score of 94.76%, along with a recall 

of 93.00%, underscoring its effectiveness in handling 

imbalanced data after SMOTE-ENN application.  

In summary, applying the Hybrid Resampling 

Method (SMOTE-ENN) generally leads to improved 

recall across all algorithms, making them more 

effective in detecting positive instances in imbalanced 

datasets. However, this improvement in recall often 

comes at the cost of a slight decrease in accuracy and 

F1-Score. The trade-off highlights the importance of 

selecting the appropriate metrics based on the specific 

needs of the application, particularly when dealing with 

imbalanced data where recall is crucial. The proposed 

method hybrid Resampling SMOTE-ENN significantly 

enhances sensitivity across LightGBM and Random 

Forest, with LightGBM emerges as the best performer, 

showing the most notable improvements generally 

demonstrates enhanced sensitivity to minority class, 

making it a valuable approach in scenarios where 

capturing positive instances is crucial. 

 
Figure 8. Confusion Matrix LightGBM-(SMOTE-

ENN) 

The confusion matrix ilustrates in Figure 8 

shown the performance of the LightGBM-SMOTE-

ENN on a classification task. It shows how well the 

model classified instances into two categories, labeled 

0 and 1. The darker blue squares indicate a higher 

number of correctly classified instances, while lighter 

areas represent misclassifications. In this case, the 

model performed very well in predicting class 0, with 

only a small number of instances incorrectly classified 

as class 1. 

 
Figure 9. ROC Curve Comparison Results + SMOTE-

ENN 

Figure 9 visualize the ROC curve shows that the 

LightGBM model with SMOTE-ENN demonstrates 

exceptional performance, achieving an AUC (Area 

Under the Curve) of 0.99, which is very close to the 

ideal ROC curve. This indicates that the model has an 

excellent ability to discriminate between positive and 

negative classes, with a high true positive rate and low 

false positive rate across various classification 

thresholds. This superior performance is likely 

attributed to the combination of the LightGBM 

algorithm's efficiency and the SMOTE-ENN 

technique's effectiveness in addressing class 

imbalance. 

 
Figure 10. Comparison Performance Results + 

SMOTE-ENN 

Figure 10 represent a performance comparison 

of several algorithms, including LightGBM, when 

applied with SMOTE-ENN. It measures accuracy, F1-

score, and sensitivity. LightGBM demonstrates the 

highest performance across all three metrics, 

significantly outperforming the other algorithms. This 

indicates that LightGBM, combined with SMOTE-

ENN, effectively addresses the class imbalance issue in 

the dataset and achieves a superior balance between 

precision and recall. 

Table 4 represent the previous research results 

demonstrate that the proposed method outperforms 

several established algorithms in terms of classification 

performance. With an accuracy of 94.50%, an F1-score 

of 94.76%, and a recall of 93.00%, the proposed 

method superior in both precision and sensitivity. In 

comparison, the Random Forest achieves strong 

metrics with an accuracy of 91.00%, F1-score of 

91.00%, and recall of 92.00%, indicating effective 

performance but still slightly lower than the proposed 
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method. Stochastic Gradient Descent shows a perfect 

recall of 100.00%, yet its F1-score is only 58.8%, 

suggesting issues with precision or imbalance problem. 

The Modified Random Forest and XGBoost have even 

lower scores, with accuracy and recall metrics that 

highlight potential weaknesses in handling certain data 

complexities. The proposed method achieves 

outstanding performance across all evaluated metrics, 

demonstrating its effectiveness and robustness in 

handling classification tasks. With an accuracy of 

94.50%, an F1-Score of 94.76%, and a recall of 

93.00%, it excels in making accurate predictions, 

balancing precision and recall, and capturing the 

majority of positive instances. This superior 

performance likely stems from several advancements. 

Table 4. Comparison of Performance Evaluation with 

Previous Research Results 

Algorithm 
Accuracy 

(%) 

F1-Score 

(%) 

Sensitiviy 

Recall (%) 

Random 

Forest [11] 
91.00 91.00 92.00 

Stochastic 

Gradient 

Descent  

[12] 

- 58.8 100.00 

Modified 

Random 

Forest [27] 

77.68 71.00 69.00 

XGBoost 

[13] 
- 60.00 65.00 

Proposed 

Method 

94.50 94.76 93.00 

Research discussion in this study is LightGBM 

while highly effective, has several limitations to 

consider. It can consume significant memory, 

especially with very large datasets, which may be a 

concern for some applications. The algorithm is 

sensitive to hyperparameter tuning, requiring careful 

adjustments to achieve optimal performance. Although 

it supports categorical features, improper handling can 

lead to suboptimal results. Additionally, like other 

ensemble methods, LightGBM often lacks 

interpretability, making it difficult to understand the 

underlying decision-making process. Lastly, it may not 

perform as well on smaller datasets due to its 

complexity. These factors should be weighed when 

deciding to use LightGBM for a specific task.  

For the future research could benefit from 

exploring diverse data sources, conducted feature 

reduction techniques considering that this method 

consumes significant memory, such as Principal 

Component Analysis (PCA) [26]. Hyperparameter 

tuning optimization can be considered [28], and also 

feature selection algorithms [29], should be examined 

to enhance models interpretability, efficiency and 

robustness. Integrating real-time monitoring systems 

with IoT devices could also facilitate continuous data 

collection and immediate analysis [30], allowing for 

timely responses to water quality issues. These 

approaches have the potential to further advance the 

effectiveness and applicability of machine learning 

models in water quality management. 

 
4. CONCLUSION 

This research proposed highlights the 

effectiveness of machine learning classifiers in water 

quality identification, particularly in addressing class 

imbalance through advanced techniques. LightGBM 

consistently demonstrates superior performance, 

achieving the highest accuracy, F1-Score, and 

sensitivity recall, making it the most reliable choice 

across metrics. The implementation of SMOTE-ENN 

significantly enhances classifier sensitivity, showing 

notable improvements. These results underscore the 

importance of selecting appropriate classifiers and 

using innovative Resampling methods to ensure robust 

performance, especially in imbalanced datasets. This 

approach enables more accurate and timely water 

quality identifications, crucial for effective monitoring 

and management. LightGBM emerges as the top 

performer, with an accuracy of 94.50%, an F1-score of 

94.76%, and a recall of 93.00%. These results 

demonstrate its effectiveness in handling imbalanced 

data, especially after applying SMOTE-ENN. 
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